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Abstract

We show that modal (and hence, intuitionistic) Medvedev’s logic is the intersection of
the logics of finite direct powers of ordinals with the converse ordering taken without
the top element, and that the latter logics have the finite model property. Then we
provide other semantic characterizations of Medvedev’s logic and related systems in
terms of various natural substructures of products of ordinals.
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1 Introduction

In this paper we study modal logics of Noetherian (in other terms, converse
well-founded) partially ordered sets which are substructures of direct products
of converse well-ordered sets, in particular, the products without an upper part.

Well-known examples of this kind are Grz.2 (the Grzegorczyk modal logic
extended with the axiom of weak directedness) and modal Medvedev’s logic.
If follows from [6] that Grz.2 is the logic of all Boolean cubes (2,≥)n with
n < ω. Such cubes without the top element are called Medvedev’s frames; the
intuitionistic logic of all Medvedev’s frames is the well-known Medvedev’s logic
of finite problems [7,8]. Modal Medvedev’s logic Mdv is the modal logic of these
structures [9,12]. Also, Grz.2 and Mdv can be characterized as the logics of
finite subsets of ω ordered by the converse inclusion:

Grz.2 = Log(Pω(ω),⊇) = Log{(2,≥)n} : n < ω}, (1)

Mdv = Log(Pω(ω)\{∅},⊇) = Log{(2,≥)n \ {top} : n < ω}. (2)

1 d.i.saveliev@iitp.ru
2 ilshapir@nmsu.edu



682 Medvedev’s logic and products of converse well orders

In spite of the similarity in the above semantic characterizations, logical prop-
erties of Grz.2 and Mdv are different. In particular, Grz.2 is given by a finite
set of axioms, so in view of its completeness with respect to a class of finite
frames, it is decidable. It is well known that both modal and intuitionistic
Medvedev logics are not finitely axiomatizable [6,9]. Whether the modal or
intuitionistic logics of the structures {(2,≥)n \ {top} : n < ω} are recursively
axiomatizable is an old-standing open problem.

In Sections 3 and 4, we consider modal logics of similar structures where
instead of 2 any ordinal is allowed. For a finite n, we define Γ(n) and ∆(n) as
the logics of the frames (ω,≥)n and (ω,≥)n \{top}, respectively. It is straight-
forward that these logics have the finite model property. In Theorem 3.3, we
show that the frames (α,≥)n and (α,≥)n \ {top} have the same logics for any
infinite α; consequently (Corollary 3.4),

Γ(n) = Log
{∏

i<n(αi,≥) : αi is an ordinal
}
,

∆(n) = Log
{∏

i<n(αi,≥) \ {top} : αi is an ordinal
}
.

We observe that
⋂
n<ω Γ(n) = Grz.2 (this fact is straightforward from (1)) and

that
⋂
n<ω∆(n) = Mdv (Theorem 4.5).

As well as Mdv, each of the logics Γ(n), ∆(n) is characterized by a recursive
set of finite frames, so these logics are co-recursively enumerable. It is known
[12] that Mdv.2 = Grz.2. We show that ∆(n).2 = Γ(n) for all n < ω (The-
orem 4.7); consequently, if ∆(n) is recursively axiomatizable, then so is Γ(n).
However, decidability of Γ(n) and ∆(n) is an open problem for n > 1.

In Section 5, we study the restrictions of the direct powers (ω,≥)n to several
A ⊆ ωn and the modal logics of these restrictions, which thus generalize the
above logics Γ(n) and ∆(n); we also consider Noetherian subframes of infinite
powers of converse ordinals.

In Section 6, we discuss other semantic interpretations of the logics Γ(n)
and ∆(n).

2 Preliminaries

We assume the reader’s familiarity with the basic notions in modal logic, which
can be found, e.g., in [1] or [2]; we recall only some standard concepts.

Modal formulas are built from a countable set of propositional variables
p, q, . . . by using ⊥ and → (chosen as the primitive Boolean connectives) and
the unary modal operator ♢. Other connectives are standard abbreviations;
in particular, 2 abbreviates ¬♢¬ . By a (modal) logic we mean a normal
propositional uni-modal logic.

A Kripke frame F′ = (W ′, R′) is a weak subframe of a Kripke frame F =
(W,R) iff ∅ ≠ W ′ ⊆ W and R′ ⊆ R. A Kripke model M′ = (F′, θ′) is a weak
submodel of a Kripke model M = (F, θ) iff F′ is a weak subframe of F and
θ′(p) = θ(p) ∩W ′ for all propositional variables p. If R′ = R ∩ (W ′ ×W ′),
then F′ and M′ are called the restrictions of F and of M to W ′, respectively. If
moreover, W ′ is upward closed w.r.t. R (in other words, is an upper cone, i.e.,
x ∈W ′ and xRy implies y ∈W ′), then these restrictions are called a generated
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subframe and a generated submodel, respectively. If w ∈W and W ′ is the least
upward closed set that contains w, then the resulting substructures are said to
be point-generated. A frame is rooted if it is generated by one of its points.

Log(F) denotes the modal logic of a frame F (or of a class of frames). If L is
a modal logic, L.2 denotes its extension with the formula ♢2p → 2♢p, and
L.3 with the formula ♢p ∧ ♢q → ♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p). Recall that (W,R) |=
♢2p → 2♢p iff R−1 ◦ R ⊆ R ◦ R−1; in particular, if (W,R) is a finite partial
order with a least element, the latter means that there is a top element. For
a non-strict partial order F, the formula F |= ♢p∧♢q → ♢(p∧♢q)∨♢(q ∧♢p)
means that every point-generated subframe of F is linear. Grz denotes the
logic of the class of all Noetherian (in other words, converse well-founded) non-
strict partial orders, and is called the Grzegorczyk logic. The following facts are
well known (see, e.g., [2]): Grz is the logic of all (finite) Noetherian non-strict
partial orders; Grz.2 is the logic of the class of all (finite) Noetherian non-strict
partial orders with a greatest element; Grz.3 is the logic of all (finite) linear
Noetherian non-strict partial orders.

The following proposition is standard, see, e.g., [2, Section 8.5].

Proposition 2.1 (Generated Subframe Lemma)

(i) If F′ is a generated subframe of F, then Log(F) ⊆ Log(F′).

(ii) Let {Fi : i ∈ I} be a family of generated subframes of a frame F, and let
every x in F belong to some Fi. Then LogF = Log{Fi : i ∈ I}.

The following two propositions are also well known (see, e.g., [1, Proposi-
tion 2.14 and Lemma 3.20]).

Proposition 2.2 If G is a p-morphic image of F, then Log(F) ⊆ Log(G).

Proposition 2.3 Let F be transitive, G finite rooted. If Log(F) ⊆ Log(G),
then G is a p-morphic image of a point-generated subframe of F .

Given frames Fi = (Wi, Ri), i ∈ I, their direct product is the frame
∏
I Fi =

(W,R) where W =
∏
i∈IWi , the Cartesian product of the sets Wi , and R is

defined point-wise: xRy iff xiRiyi for all i ∈ I. Given a frame F, we write Fn

for its nth direct power.

Proposition 2.4 If (Fi)i∈I is a non-empty family of frames and we have
∀x∃y (xRiy) in every Fi , then for every i ∈ I the ith projection is a p-morphism
of

∏
I Fi onto Fi .

Proof. Immediate from the definition. 2

Proposition 2.5 If (Fi)i∈I and (Gi)i∈I are non-empty families of frames such
that for every i ∈ I there exists a p-morphism of Fi onto Gi, then there exists
a p-morphism of

∏
I Fi onto

∏
I Gi .

Proof. For each i ∈ I, pick a p-morphism πi of Fi onto Gi . For each f in∏
I Fi put π(f)(i) := πi(f(i)). It is straightforward that π is the required

p-morphism. 2
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Definition 2.6 Let M′ be a weak submodel of M, and let Ψ be a set of modal
formulas. M′ is a selective filtration of M through Ψ iff the following holds:
whenever M, w |= ♢ψ for some w ∈W ′ and ♢ψ ∈ Ψ, then there exists v ∈W ′

such that wR′v and M, v |= ψ (i.e., v witnesses that ♢ψ holds at w in M).

The following fact was known since 1970s.

Proposition 2.7 (Selective Filtration Lemma) Let Ψ be a set of formu-
las closed under taking subformulas, and let M′ be a selective filtration of M
through Ψ. Then for all w ∈W ′ and φ ∈ Ψ, we have

M′, w |= φ ⇔ M, w |= φ.

Proof. Induction on φ. 2

Through the paper, we regularly consider a frame F with the removed top
element (provided the relation of the frame is an order and the top element
exists), for which we reserve the notation F \ {top}. In particular, if α is an
ordinal, (α,≥)n\{top} denotes the direct power (α,≥)n without the n-sequence
of 0’s.

3 Products of converse ordinals

Below we consider frames (α,≥) where α is an ordinal and ≥ its converse
ordering, and their direct products

∏
i<n(αi,≥) with finite n.

It follows from Proposition 2.4 that the logics of such frames decrease by
inclusion with increasing ordinals α. We are going to show that, in fact, these
logics do not depend on a particular α whenever α is infinite; moreover, they
are characterized by upper finite cones of their frames (and thus have the finite
model property).

For a formula φ and a Kripke model M = (W,R, θ), let ∥φ∥M = {x ∈ W :
M, x |= φ}; in particular, ∥p∥M = θ(p).

Lemma 3.1 Let M = (W,≥, θ) be a Kripke model such that ≤ is a well-
founded partial order on W . Let Ψ be a set of formulas closed under taking
subformulas, and let V be a non-empty subset of W such that

{x ∈W : ∃φ ∈ Ψ (x is ≤-minimal in ∥φ∥M)} ⊆ V.

Then the restriction of M to V is a selective filtration of M through Ψ.

Proof. Suppose M, w |= ♢ψ for some w ∈ V and ♢ψ ∈ Ψ. Then the set
{v ∈ W : w ≥ v} ∩ ∥ψ∥M is non-empty. Let v be a ≤-minimal element of
this set. Then v is a ≤-minimal element of ∥ψ∥M, and hence v ∈ V . By the
construction, w ≥ v and M, v |= ψ. 2

Remark 3.2 Lemma 3.1 remains true if ≤ is a well-founded pre-order (in this
case, x is said to be ≤-minimal iff for all y ∈W , y ≤ x implies x ≤ y.)

Theorem 3.3 For all α ≥ ω and n < ω, we have:

(i) Log((α,≥)n) = Log((ω,≥)n) = Log{(m,≥)n : m < ω},
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(ii) Log((α,≥)n \ {top}) = Log((ω,≥)n \ {top}) = Log{(m,≥)n \ {top} : m <
ω}.

Proof. (i). For all m < ω, (m,≥)n is a generated subframe of (ω,≥)n, and
the latter is a generated subframe of (α,≥)n since ω ≤ α. It follows that

Log((α,≥)n) ⊆ Log((ω,≥)n) ⊆ Log{(m,≥)n : m < ω}.

So it remains to show that Log{(m,≥)n : m < ω} ⊆ Log(α,≥)n. To this end,
suppose that a modal formula φ is satisfiable in (α,≥)n and show that φ is
satisfiable in (m,≥)n for some m < ω.

Assume there is a model M on the frame (α,≥)n satisfying φ at some point,
in other words, ∥φ∥M ̸= ∅. Let Ψ consist of all subformulas of φ. For each
ψ ∈ Ψ, we let

Uψ := {s ∈ αn : s is ≤-minimal in ∥ψ∥M} and U :=
⋃
ψ∈Ψ

Uψ .

Every antichain in (α,≤)n is finite (by generalized Dickson’s lemma, see, e.g.,
[5, Theorem 2.10]), so every Uψ is finite. Hence, since Ψ is finite, U is finite as
well.

Further, consider the projections of U for all i < n and their product:

Ui := {β < α : ∃x ∈ U x(i) = β} and V :=
∏
i<n

Ui .

Since ∥φ∥M ̸= ∅, and so Uφ ̸= ∅, the set U contains some s such that M, s |= φ.
Clearly, U ⊆ V . By Lemma 3.1, the restriction M′ of M to V is a selective
filtration ofM through Ψ. By the Selective Filtration Lemma (Proposition 2.7),
we get M′, s |= φ.

This proves that φ is satisfiable in (V,≥). Finally, for each i < n, we let

mi := |Ui| and m := max
i<n

mi .

Clearly, (V,≥) is isomorphic to (
∏
i<nmi,≥), and the latter is a generated

subframe of (m,≥)n. It follows that φ is satisfiable in (m,≥)n, as required.

(ii). The proof is analogous with the only modification at the step when we
define Ui. Namely, let M be a model on the frame (α,≥)n \ {top} such that
∥φ∥M ̸= ∅, and let the set U be defined as above. Now for each i < n, we let

Ui := {β < α : ∃x ∈ U x(i) = β} ∪ {0}.

We define the numbers mi and m as above and observe that the frame of
the restriction of M to the set

∏
i<n Ui \ {top} is isomorphic to the frame

(
∏
i<nmi,≥) \ {top}. The latter is a generated subframe of (m,≥)n \ {top}.

By the same reasoning as above, φ is satisfiable in (m,≥)n \{top}, as required.
The proof is complete. 2
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We introduce the following notation for these logics:

Γ(n) := Log((ω,≥)n),

∆(n) := Log((ω,≥)n \ {top}).
Corollary 3.4 For all finite n, we have:

(i) Γ(n) = Log{
∏
i<n(αi,≥) : αi is an ordinal},

(ii) ∆(n) = Log{
∏
i<n(αi,≥) \ {top} : αi is an ordinal}.

Proof. Follows from Theorem 3.3 and Proposition 2.4. 2

Corollary 3.5 For all finite n, Log(F) = Grz.3 implies Log(Fn) = Γ(n) and
Log(Fn \ {top}) = ∆(n).

Proof. For every finite m, there is a point-generated subframe of F isomorphic
to (m,≤), and so a point-generated subframe of Fn isomorphic to (m,≤)n.
Hence, Log(Fn) ⊆ Γ(n) by Theorem 3.3. For the converse inclusion, observe
that any point-generated subframe of Fn is the direct product of n converse
well-orders, and so Log(Fn) ⊇ Γ(n) by Corollary 3.4. The same reasoning
proves that Log(Fn \ {top}) = ∆(n). 2

Remark 3.6 One can generalize the above corollary for the direct product of
n frames Fi with Log(Fi) = Grz.3 for all i < n.

4 The logics Γ(n), ∆(n), and Medvedev’s logic

In this section, we study the connection between the logics Γ(n) and Grz.2 and
between the logics ∆(n) and Medvedev’s logic.

4.1 The sequences Γ(n) and ∆(n)

Let Mdv denote (modal) Medvedev’s logic, which is the logic of all non-empty
finite subsets of ω endowed with their converse inclusion order:

Mdv := Log(Pω(ω)\{∅},⊇).

The following fact follows from [6] (see also [13], [12]):

Proposition 4.1 Log(Pω(ω),⊇) = Grz.2.

Lemma 4.2 For any n < ω, there are modal formulas φmax
≤n and φram

≤n such
that for any finite partial order F = (W,≤) with a least element,

(i) F |= φmax
≤n iff there exist ≤ n maximal points above each x ∈W ,

(ii) F |= φram
≤n iff there exist ≤ n immediate successors of each x ∈W .

Proof. (i). Put

φmax
≤n :=

∧
i<n

♢2
(
pi ∧

∧
i̸=j<n

¬ pj
)
→ 2♢

∨
i<n

pi .

If F has at most n maximal points and the premise of φmax
≤n holds in a point

w in a model on F, then at each maximal point one of pi, i < n, is true; hence
the conclusion φmax

≤n holds at w.
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If F has at least n+ 1 maximal points w0, . . . , wn, put θ(pi) = {wi} for all
i < n and consider the model (F, θ); at the least element of F (which exists by
our assumption), the premise of φmax

≤n holds, and the conclusion is false, since
all pi, i < n, are false at wn.

(ii). This statement is due to [3] (see also [2, Proposition 2.41]): there are
intuitionistic formulas expressing the property on finite posets; the formulas
φram
≤n are their Gödel–Tarski translations. 2

Lemma 4.3 For any n, 0 < n < ω,

(i) φmax
≤1 belongs to Γ(n),

(ii) φmax
≤n belongs to ∆(n) but not to ∆(n+ 1),

(iii) φram
≤n belongs to ∆(n) and Γ(n) but not to ∆(n+ 1) and Γ(n+ 1).

Proof. Clear. 2

Proposition 4.4 For all n < ω,

(i) ∆(1) = Γ(1) = Grz.3,

(ii) Grz ⊂ ∆(n) ⊂ Γ(n) if n ≥ 2,

(iii) ∆(n+ 1) ⊂ ∆(n) and Γ(n+ 1) ⊂ Γ(n),

(iv) ∆(n) ⊈ Γ(n+ 1) and Γ(n) ⊈ ∆(2).

Proof. Grz is valid in any Noetherian poset, so we have Grz ⊆ ∆(n) in (ii).
The logic Grz.3 is the logic of all Noetherian linearly ordered sets. This
proves (i).

For ∆(n) ⊆ Γ(n), note that (ωn,≥) is a p-morphic image of the frame
F = (ω,≥)n\{top}; e.g., the map π defined by letting (πs)(i) = max(s(i), 1), for
all s in F and i < n, is a p-morphism of F onto (ω\1,≥)n, and the latter frame
is obviously isomorphic to (ω,≥)n. Also (ω,≥)n is isomorphic to a generated
subframe of (ω,≥)n+1, e.g., to the subframe consisting of elements s ∈ ωn+1

with s(0) = 0, and similarly for the frames without their top elements, thus
proving ∆(n+ 1) ⊆ ∆(n) and Γ(n+ 1) ⊆ Γ(n) in (iii).

Furthermore, by Lemma 4.2(i),(ii), the formula φmax
≤1 is in Γ(n)\∆(n) when-

ever n ≥ 2, whence it follows ∆(n) ̸= Γ(n) in (ii) and Γ(n) ⊈ ∆(2) in (iv). Also
by Lemma 4.2(ii), the formula φmax

≤n is in ∆(n) \∆(n+ 1) and Γ(n) \ Γ(n+ 1)
whenever n ≥ 1, whence it follows ∆(n + 1) ̸= ∆(n) and Γ(n + 1) ̸= Γ(n),
and so Grz ̸= ∆(n), thus completing the proof of (ii) and (iii). Finally, by
Lemma 4.2(iii), the formula φram

≤n is in ∆(n) \ Γ(n+ 1) whenever n ≥ 1, which
completes the proof of (iv) and also provides another way to see Grz ̸= ∆(n).

The proposition is proved. 2

Theorem 4.5
⋂
n<ω∆(n) = Mdv and

⋂
n<ω Γ(n) = Grz.2.

Proof. The inclusion
⋂
n<ω∆(n) ⊆ Mdv is immediate from the fact that every

frame (2,≥)n \ {top} is a point-generated subframe of (ω,≥)n \ {top}. By the
same argument and Proposition 4.1, we get

⋂
n<ω Γ(n) ⊆ Grz.2 as well.

Let us check the inclusion Mdv ⊆
⋂
n<ω∆(n). For this, it suffices to con-

struct, for each n < ω, a p-morphism σn of (Pω(ω)\{∅},⊇) onto (ω,≥)n\{top}.
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∆(1)= Γ(1) = Grz.3

Γ(2)

∆(2) Γ(3)

∆(3) Γ(4)

∆(4)
. . .

. . . Grz.2

Mdv

Grz

Fig. 1. Inclusions between logics Γ(n) and ∆(n)

Define it as follows. Partition ω into n infinite disjoint subsets Xi, i < n,
and let σn(A) = (|A ∩ X0|, . . . , |A ∩ Xn−1|), for all A ∈ Pω(ω)\{∅}. It is
easy to see that σn is a surjective p-morphism. Indeed, A ⊇ B clearly im-
plies |A ∩ Xi| ≥ |B ∩ Xi| for all i < n, and thus σn(A) ≥ σn(B); also if
σn(A) = (|A ∩X0|, . . . , |A ∩Xn−1|) ≥ (b0, . . . , bn−1) then letting Bi consisting
of the first bi elements of A ∩Xi, we have A ⊇ B and σn(B) = (b0, . . . , bn−1);
and the surjectivity is obvious by the same reason.

Finally, we have Grz.2 ⊆
⋂
n<ω Γ(n) since every (ω,≥)n is a Noetherian

poset with a top element.
The proof is complete. 2

The diagram of strict inclusions between the considered logics is shown on
Figure 1.

4.2 Remarks on axiomatization and decidability

By Lemma 4.3 (and Proposition 4.4), we have

Grz.2 + φram
≤n ⊆ Γ(n) and Grz + φmax

≤n + φram
≤n ⊆ ∆(n).

By Theorem 3.3, each of the logics Γ(n), ∆(n) is characterized by a recursive
set of finite frames, so these logics are co-recursively enumerable; hence, they
are decidable if they are recursively axiomatizable.

Question 4.6 Are the logics Γ(n), ∆(n), 2 ≤ n < ω, finitely axiomatizable?
recursively axiomatizable?

Theorem 4.7

(i) Mdv.2 = Grz.2,

(ii) ∆(n).2 = Γ(n) for all n < ω.

Proof. (i) This fact is known, see Propositions 13 and 9 in [12].
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(ii) As ∆(n) ⊆ Γ(n), we have ∆(n).2 ⊆ Γ(n).2 = Γ(n).
In [10], it was shown that if a transitive logic L has the finite model property,

then so does L.2. Hence ∆(n).2 is the logic of the class of finite rooted ∆(n)-
frames with a greatest element.

Assume that a modal formula φ is refutable in a model M on one of
such frames F. Since F validates ∆(n), it follows from Proposition 2.3 that
M is a p-morphic image of a model N based on a point-generated subframe of
(ω,≥)n \ {top}. This p-morphism maps all maximal points of N to the greatest
point of M, and so the valuations of variables coincide at these points. Add
a top point to N with the same valuation and denote the new model by N′.
Clearly, N is a selective filtration of N′ through the set of all modal formu-
las. The formula φ is refutable in N since M is a p-morphic image of N. By
the Selective Filtration Lemma (Proposition 2.7), φ is refutable in N′. Now
it remains to observe that the frame of N′ is a Γ(n)-frame. This proves the
inclusion Γ(n) ⊆ ∆(n).2. 2

Corollary 4.8 If ∆(n) is finitely (recursively) axiomatizable, then so is Γ(n).

5 Substructures of finite powers

In this section, we study the restrictions of the direct powers (ω,≥)n to several
A ⊆ ωn and the modal logics of these restrictions, which thus generalize the
logics Γ(n) and ∆(n) considered above.

5.1 The logics Γ(n,m)

For an ordinal α, the αth level of a Noetherian frame F = (X,≥) consists of all
points of F having the rank α in the well-founded frame (X,≤).

The following fact is obvious.

Lemma 5.1 The kth level of (ω,≥)n consists precisely of sequences s such that∑
i<n s(i) = k, so its size is the number of (weak) compositions

(
k+n−1
n−1

)
.

Let Pn,m denote the restriction of the frame (ω,≥)n to its levels ≥ m; so
the universe of Pn,m is

{
s ∈ ωn :

∑
i<n s(i) ≥ m

}
. Four first frames for the

case of n = 2 are depicted on Figure 2.

For 1 ≤ n < ω, 0 ≤ m < ω, let

Γ(n,m) := Log(Pn,m).

Let also

Γ(ω,m) := Log{Pn,m : n < ω},
Γ(n, ω) := Log{Pn,m : m < ω},
Γ(ω, ω) := Log{Pn,m : m,n < ω}.

Thus Γ(ω,m) =
⋂
n<ω Γ(n,m), Γ(n, ω) =

⋂
m<ω Γ(n,m), and Γ(ω, ω) =⋂

n,m<ω Γ(n,m). For sake of completeness we may let Γ(0, 0) := the logic of
a trivial frame consisting of a reflexive singleton, axiomatized by p↔ ♢p.
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(0, 0)

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,0

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,1

(1, 1)

(2, 1) (1, 2)

(2, 0) (0, 2)

(3, 0) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,2

(2, 1) (1, 2)(3, 0) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,3

Fig. 2. Frames P2,m

We restate the previous definitions and facts proved above:

(i) Γ(1,m) = Grz.3 for all m ≤ ω,

(ii) Γ(n, 0) = Γ(n) and Γ(n, 1) = ∆(n),

(iii) Γ(ω, 0) = Grz.2 and Γ(ω, 1) = Mdv.

The following theorem generalizes Proposition 4.4.

Theorem 5.2

(i) Grz ⊆ Γ(ω, ω),

(ii) Γ(n,m) ⊇ Γ(n′,m′) if n ≤ n′ ≤ ω and m ≤ m′ ≤ ω,

(iii) Γ(n, ω) ⊈ Γ(n+ 1, 0),

(iv) Γ(n,m) ⊈ Γ(n′,m′) if
(
m+n−1
n−1

)
<

(
m′+n′−1
n′−1

)
.

Proof. Item (i) is clear, and for (ii), it suffices to consider only the cases of
n′ = n+ 1 and m′ = m+ 1.

We have Γ(n,m) ⊇ Γ(n + 1,m) since the frame Pn,m is isomorphic to
the generated subframe of Pn+1,m consisting of s with s(0) = 0. To show
Γ(n,m) ⊇ Γ(n,m+1), we shall construct a p-morphism of Pn,m+1 onto Pn,m.

To simplify our construction, we first replace Pn,m with the substructure
Qn,m of Pn,m+1 consisting of s with s(0) > 0. The shift ρ defined by letting
(ρs)(0) = s(0) + 1, and (ρs)(i) = s(i) if 0 < i < n, is an isomorphism of Pn,m

onto Qn,m.
Now we construct a map π that gives, for all m < ω, a p-morphism of

Pn,m+1 onto Qn,m ⊆ Pn,m+1. For any s ∈ ωn \ {(0, . . . , 0)}, define π(s) as
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follows: if s(0) > 0, let πs = s; otherwise, i.e., if s(0) = 0, let

(πs)(i) :=


1 if i = 0,

s(i)− 1 if i = min supp(s),

s(i) otherwise,

where supp(s) := {i < n : s(i) ̸= 0}, the support of s. For brevity, let also
is := min supp(s). Note that s ≥ t implies supp(s) ⊇ supp(t) and so is ≤ it.

Let us verify that π is as required. Obviously, π maps Pn,m+1 onto Qn,m

and leaves all the points of Qn,m fixed. It is easy to see that π preserves the
levels:

∑
i<n(πs)(i) =

∑
i<n s(i). We must show that π is a p-morphism,

i.e., a homomorphism with the lifting property. This is a routine check, which
however we write down for the sceptic reader.

Pick s ≥ t and show πs ≥ πt. For the case of t(0) > 0, we have s(0) > 0
and so πs = s ≥ t = πt. Consider now the case of t(0) = 0. We have then
(πt)(0) = 1. But if s(0) > 0 then (πs)(0) = s(0) ≥ 1, and if s(0) = 0 then
(πs)(0) = 1, thus we have (πt)(0) ≤ (πs)(0) in any case. Further, if s(0) > 0
then (πs)(i) = s(i) ≥ t(i) ≥ (πt)(i) for all i ∈ n \ {0}. If s(0) = 0, the same
relationship (πs)(i) = s(i) ≥ t(i) ≥ (πt)(i) holds for all i ∈ n\{0, is}; moreover,
is ≤ it. But if is = it then (πs)(is) = s(is) − 1 ≥ t(is) − 1 = (πt)(is), and if
is < it then (πt)(is) = 0 since 0 < is < it; thus we have (πs)(is) ≥ (πt)(is) in
any case.

Pick now πs ≥ t′ with t′ ∈ ran(π), i.e., with πt′ = t′, and find t with s ≥ t
and πt = t′. If s(0) > 0 then πs = s, so it suffices to let t = t′. If s(0) = 0,
define t by letting t(0) = 0, t(is) = t′(is)+1, and t(i) = t′(i) if i ∈ n\{is}. Note
that it = is. We have: s(0) = t(0) = 0, so (πs)(0) = (πt)(0) = 1, and t′(0) = 1
(since 1 ≤ t′(0) ≤ (πs)(0) = 1); also s(is) = (πs)(is) + 1 ≥ t(is) + 1 = t(is)
and (πt)(is) = t(is) − 1 = t′(is) + 1 − 1 = t′(is); finally, if i ∈ n \ {0, is} then
s(i) = (πs)(i) ≥ t′(i) = t(i).

So we have proved that π is a p-morphism of Pn,m+1 onto Qn,m.
Finally, for (iii), note that φram

≤n ∈ Γ(n, ω) \ Γ(n + 1, 0), and for (iv), that

φmax
≤N ∈ Γ(n,m) \ Γ(n′,m′) where N =

(
m+n−1
n−1

)
by Lemma 5.1. 2

Corollary 5.3

(i) Γ(n,m) ⊃ Γ(n′,m) if n < n′,

(ii) Γ(n,m) ⊃ Γ(n,m′) if m < m′.

Proof. Theorem 5.2(ii)–(iv). 2

The diagram of (non-strict) inclusions between the logics Γ(n,m) is shown
on Figure 3.

Question 5.4 What about the inclusions of the logics that are not under the
scope of Theorem 5.2? E.g., is Γ(3, 1) ⊆ Γ(2, 2)?
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Γ(1, 0)

Γ(2, 0)

Γ(2, 1) Γ(3, 0)

Γ(2, 2) Γ(3, 1) Γ(4, 0)

Γ(2, 3) Γ(3, 2) Γ(4, 1) Γ(5, 0)

. .
. Γ(3, 3) Γ(4, 2) Γ(5, 1)

. . .

Γ(2, ω) . .
. Γ(4, 3) Γ(5, 2)

. . . Γ(ω, 0)

Γ(3, ω) . .
. Γ(5, 3)

. . . Γ(ω, 1)

Γ(4, ω) . .
. . . . Γ(ω, 2)

Γ(5, ω) Γ(ω, 3)

. . . . .
.

Γ(ω, ω)

= Γ(1,m) = Grz.3

= Grz.2

= Mdv

Fig. 3. Inclusions between logics Γ(n,m)

As we have Mdv = Γ(ω, 1) ⊇ Γ(ω, 2) ⊇ Γ(ω, 3) ⊇ . . . ⊇ Γ(ω, ω) ⊇ Grz,
these logics can be regarded as “sub-Medvedev”; the next proposition below
confirms this view. Given cardinals κ < λ, let Pλ,κ(X) := Pλ(X) \ Pκ(X) =
{A ⊆ X : κ ≤ |A| < λ}.

Proposition 5.5 For all m < ω,

Γ(ω,m) = Log(Pω,m(ω),⊇) = Log{(Pn+1,m(n),⊇) : n < ω}.

Proof. The second equality is clear since the finite frames (Pn+1,m(n),⊇) are
point-generated subframes of (Pω,m(ω),⊇) and cover it.

Also each (Pn+1,m(n),⊇) is isomorphic to a point-generated subframe of
Pn,m (via characteristic functions), whence we get ⊆ in the first equality. To
prove that ⊇ holds as well, one use the maps σn constructed in the proof
of Theorem 4.5. Recall that, for a partition of ω into n infinite subsets Xi,
i < n, we let σn(A)(i) := |A ∩ Xi| for all i < n and A ∈ Pω(ω). Then σn is
a p-morphism of (Pω(ω),⊇) onto (ω,≥)n; moreover, it is easy to see that it
preserves the levels, i.e., the ranks of points (where, of course, the kth level
of (Pω(ω),⊇) consists of sets of size k), hence its restriction to Pω,m(ω) is
a p-morphism onto Pm,n. 2

Related systems, the intuitionistic logics of (P(ω)\P(m),⊇), 0 < m < ω,
were considered in [13]; none of them are finitely axiomatizable. We conjecture
that the logics Γ(ω,m) are not finitely axiomatizable as well.
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5.2 The logics of monotone sequences

Given n < ω, let

D≤(n) = {s ∈ ωn : s(0) ≤ . . . ≤ s(n− 1)},
D≥(n) = {s ∈ ωn : s(0) ≥ . . . ≥ s(n− 1)}.

Note that D≤(2) = ≤ and D≥(2) = ≥ (where ≤ and ≥ are on ω).
It is easy to see that for any n, the frames (D≤(n),≥) and (D≥(n),≥)

are isomorphic under the natural isomorphism taking (s(0), . . . , s(n − 1)) to
(s(n− 1), . . . , s(0)), hence it suffices to consider only one of them.

Theorem 5.6 Log(D≤(n),≥) = Γ(n).

Proof. To see the inclusion Γ(n) ⊆ Log(D≤(n),≥), define π : ωn → D≤(n)
by letting for all i < n,

(πs)(i) := max
j≤i

s(j).

Clearly, π is surjective, and it leaves all points of D≤(n) fixed: πs = s for
all s ∈ D≤(n). Also s ≥ t clearly implies πs ≥ πt. And if πs ≥ t′ for some
t′ ∈ D≤(n), letting t(i) = t′(i) if s(i) = πs(i), and t(i) = 0 otherwise, we have
s ≥ t and πt = t′. Thus π is a p-morphism of (ωn,≥) onto (D≤(n),≥), which
proves the inclusion above.

To prove the converse inclusion Log(D≤(n),≥) ⊆ Γ(n), for each k < ω, let
Sk ⊆ D≤(n) be the subframe generated by the point (k, k · 2, . . . , k · n), and
let Ck ⊆ Sk be the “n-dimensional cube” of size kn consisting of all points
between the points (0, k, k · 2, . . . , k · (n− 1)) and (k, k · 2, k · 3, . . . , k · n):

Ck := {s ∈ ωn : k · i ≤ s(i) ≤ k · (i+ 1) for all i < n}.

Define πk : Sk → Ck by letting for all i < n,

(πks)(i) := max(s(i), k · i).

It is easy to see that πk leaves all points of Ck fixed, and it is a p-morphism of
(Sk,≥) onto (Ck,≥), whence it follows Log(Sk) ⊆ Log(Ck). But (Ck,≥) are
isomorphic to (nk,≥), whence

⋂
k<ω Log(Ck,≥) = Γ(n) by Theorem 3.3, and

(Sk,≥) are point-generated subframes of (D≤(n),≥) with
⋃
k<ω Sk = D≤(n),

whence
⋂
k<ω Log(Sk,≥) = Log(D≤(n),≥) by Proposition 2.1(ii). Therefore,

Log(D≤(n),≥) =
⋂
k<ω

Log(Sk,≥) ⊆
⋂
k<ω

Log(Ck,≥) = Γ(n),

as required. 2

A similar result can be obtained for the logics ∆(n); for this, however, it
does not suffice to remove only the top element from the frame of monotone
sequences as the residual has its own top (e.g., in D≤(2), under removing (0, 0)
the new top (0, 1) appears). The precise statement of such a result on ∆(n) is
hence more complicated, and we postpone this for the further work.
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5.3 Noetherian substructures of infinite powers

The structures consisting of all finite subsets and of all finite sequences can be
naturally identified with certain substructures of infinite powers. Hence, Mdv
and, more generally, the logics Γ(ω,m) considered above, can be also regarded
as instances of logics of such substructures.

Consider the frame consisting of all eventually zero sequences endowed with
the point-wise order; it can be regarded as a subdirect infinite power (while all
sequences form the usual direct power). Given ordinals α, β, define

E(α, β) := {f ∈ αβ : |supp(f)| < ω} where supp(f) := {i < β : f(i) ̸= 0}.

As above, we consider the point-wise order on E(α, β): for f, g ∈ αβ , we let
f ≤ g iff f(i) ≤ g(i) for all i < β; so the top element of (E(α, β),≥) is the
β-sequence of 0’s.

Theorem 5.7 For all infinite ordinals α, β,

Log((E(α, β),≥) \ {top}) = Mdv and Log(E(α, β),≥) = Grz.2.

Proof. Given f ∈ αβ , the subframe of the frame (E(α, β),≥) generated by
the point f is isomorphic to (α|supp(f)|,≥), and likewise for the frame without
the top element. As α, β ≥ ω, Theorem 3.3 gives the conclusion. 2

6 Other characterizations of Γ(n) and ∆(n)

The logics Γ(n) and ∆(n) admit different semantic interpretations.

1. By the standard translation argument (see, e.g., [1, Section 2.4]), the logics
Γ(n) and ∆(n) are fragments of the n-adic (i.e., relation variables are n-ary)
second order logic over natural numbers with the standard ordering. Proposi-
tional variables p are interpreted as n-ary predicates on ω, the order on tuples
in (ω,≥)n is interpreted via conjunctions

∧
i<n xi ≥ yi.

2. The logics Γ(2) and ∆(2) can be considered in the context of interval tem-
poral logic (see, e.g., [4]). Let W be the set of closed segments [m,n] of integer
numbers containing a fixed integer (e.g., 0):

W := {[m,n] : m ≤ 0 ≤ n} where [m,n] := {k ∈ Z : m ≤ k ≤ n}.

It is immediate that Log(W,⊇) is Γ(2) and Log(W \{[0, 0]},⊇) is ∆(2) accord-
ing to the fact that (W,⊇) is isomorphic to (ω,≥)2; the isomorphism is defined
by letting (m,n) 7→ [−m,n].
3. For the first time, the logics Γ(n) and ∆(n) has been appeared in studies
of modal logics of model-theoretic relations undertaken in a recent paper [11].
Referring the reader to that paper for related concepts and results, we prove
the following characterization of the logics Γ(2n) and ∆(2n), announced there.

Theorem 6.1 Let n < ω, and let τ be a signature consisting of n unary predi-
cates and possibly some constants. The robust modal logic of the class of models
of τ with the submodel relation is Γ(2n) if τ has at least one constant, and ∆(2n)
otherwise.
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Proof. Let ⊒ denote the submodel relation on models of a given signature:
A ⊒ B iff B is a submodel of the model B. Let also ≃ be the isomorphism
(equivalence) relation and [A]≃ the equivalence class {A′ : A′ ≃ A}, i.e., the
isomorphism type of A. We define [A]≃ ⊒ [B]≃ iff there exist A′ ≃ A and
B′ ≃ B such that A′ ⊒ B′. By [11, Theorem 29], the robust modal logic of
the submodel relation on the class K of all models of a given signature τ is
Log{(Sub≃(A),⊒≃) : A ∈ K} where Sub≃(A) is {[B]≃ : A ⊒ B}.

Fix an enumeration P0, . . . , Pn−1 of the unary predicates in τ . Let A be
a model of τ with the universe A, and let W be the set of cardinals ≤ |A|. For
each B ⊆ A define a map sB : P(n) →W by letting, for all X ⊆ n,

sB(X) := |{a ∈ B : A ⊨ Pi(a) iff i ∈ X}|.

Note that the submodels of A given by subsets B and B′ are isomorphic iff
sB(X) = sB′(X) for all X ⊆ n; we let sB ∼ sB′ iff this is the case. Hence we
can define a map f : Sub≃(A) → WP(n) by letting f([B]≃) := [sB ]∼, and this
map is injective.

Moreover, note that each model B of τ is a submodel of a model A of τ
such that sA(n) has the greatest possible value |A|. Thus Sub≃(B) forms
a point-generated subframe of Sub≃(A). Therefore, by Proposition 2.1, it suf-
fices to handle the case of such models A. In this case, f is a bijection between
Sub≃(A) andW

P(n) providing τ contains at least one constant; the top element
relates to the least submodel of A consisting of its constants (and the bottom
element, of course, to the whole model A). Moreover, f is an isomorphism of
(Sub≃(A),⊒≃) and (W,≥)2

n

where ≤ is the usual ordering of cardinals. For
the case without constants, the corresponding structure is (W,≥)2

n \ {top};
maximal elements relate to the singleton submodels of A. Since ≤ on W is
a well-order (under the axiom of choice), the statement now follows from The-
orem 3.3. 2
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