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Chronological future modality in

Minkowski spacetime

ILYA SHAPIROVSKY AND VALENTIN SHEHTMAN

1 Introduction

The problem of logical foundations of contemporary physics was included
by David Hilbert in the list of the most important mathematical problems
and generated an interesting research area in nonclassical logic. Study of
relativistic temporal logics is a natural topic within this area. Their investi-
gation was initiated by Arthur Prior’s proposal in [10], but at the early stage
did not move fast — perhaps because relativistic time is both branching and
dense, which is rather unusual for modal logic.

Let us recall that two basic relations in Minkowski spacetime are causal
(<) and chronological (<) accessibility. The causal future of a point-event
x consists of all those points y, to which a signal from = can be sent; x < y
if this signal is slower than light.

The first significant result in relativistic temporal logic was the theorem
by Robert Goldblatt [6] identifying the (“Diodorean”) modal logic of rela-
tion < as the well-known S4.2. Then in [12] the second author described
modal logics of domains on Minkowski plane ordered by <.

This paper makes the next essential step after the past twenty years. It
solves one of three problems put by R. Goldblatt in [6] (see also [7]): to
axiomatize the modal logic of the frame (R", <).

For this logic L, we present an axiom system. Its axioms are widely
known in modal logic, except for the specific axiom of 2-density, first intro-
duced in [6]. The logic Lo is rather standard, but the completeness proof for
the intended interpretation is not so straightforward. The main technical
problem is the proof of the finite model property. As 2-density is not pre-
served under filtration in the Lemmon-Segerberg style (when some worlds
are identified), we use the Kripke—Gabbay method of selective filtration in-
stead. This method allows us to extract a finite submodel from an infinite
model, see e.g. [2]. In our case selective filtration is applied to the canonical
model in a combination with the method of maximal points, due to Kit Fine
[3]. Similar arguments were used for various modal and intermediate logics
by P. Miglioli, M. Zakharyaschev, F. Wolter and others. The finite model
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characterization is convenient for obtaining complexity bounds of Ly, Lo;
this subject is postponed until a further publication.

The final part of the proof is a geometric construction of a p-morphism
following the lines of [6] and [12].

In the last Section we discuss applications of our results to many-
dimensional modal logics, such as products and interval logics.

2 Basic notions

In this paper all modal logics are normal monomodal propositional logics
containing K4; as usual, modal logics are considered as certain sets of for-
mulas. For a modal logic A and a modal formula A, the notation A F A
means A € A; A + A denotes the smallest modal logic containing A U {A}.
We assume that ¢, —, L are the basic connectives, and O, =, V, A, T
are derived. PV denotes the set of propositional variables.
Here are the names for some particular modal formulas:

A4 :=00p — Op, AD =0T,
A2 := o0Op — OOp, Ad := Ady = Op — O0p,
Adp = O0p1 A ... AOpp = O(Op1 A ... A Opn),

and the names for some modal logics:

K4 := K + A4, D4 := K4 + AD,
D4.2 .=D4 + A2, L1 = D4d2 :=D4 + Adg,
L2 = D42d2 = L1 + A2.

By (Kripke) frame we mean a non-empty set with a transitive rela-
tion (W, R). A (Kripke) model is a Kripke frame with a valuation: M =
(W, R, ), where 6§ : PV — 2V (2V denotes the power set of W).

For a Kripke model M = (W, R, §), the notation x € M means z € W.
The sign F denotes the truth at a point of a Kripke model and also the
validity in a Kripke frame.

For a class of frames F, L(F) denotes the modal logic determined by F,
i.e., the set of all formulas that are valid in all frames from F. For a single
frame F, L(F) abbreviates L({F}). Recall that a cluster in (W, R) is an
equivalence class under the relation

~rp=(RNR™ YU Iy

(where Iy is the equality relation on W), a degenerate cluster is an ir-

reflexive singleton. As usual, for z € W, V C W we denote R(z) := {y |

zRy}, R(V):= |U R(x). A cluster is called mazimal if R(C) C C; a point
zeV



Chronological Future Modality in Minkowski Spacetime 439

x € W is called mazimal if its cluster is maximal. The associated relation
between clusters

C<gD:=DCR(C),C<pD:=C<gpDand C#D

are transitive and antisymmetric, and <p is irreflexive. For a frame F' =
(W,R) let F/ ~NRi— (W/ NR;SR)-

A Kripke model M, = (W1, Ry,6,) is a (weak) submodel of M = (W, R, 0)
(notation: My C M) if Wy C W, Ry C R, 61(q) = 6(q) N 2" for every
g € PV. A particular case of a submodel is when Ry = RN (W; x W;); in
this case M; is called a restriction of M to Wi and denoted by M|W;. A
submodel M|W; is called generated it R(W1) C W;. A particular case of a
generated submodel is a cone M* = M|W?, where W* = {z} U R(z).

It is well-known that formula A4 corresponds to transitivity of a Kripke
frame and AD corresponds to seriality: Va3y xRy. The correspondents for
A2, Ad, are also easily described:

LEMMA 1. For a frame F,
o F'F A2 iff F is confluent, i.e., satisfies

VaVy1Vy23z(zRy1 & zRys = y1 Rz & yaRz);

e F'E Ad, iff F is n-dense, i.e., the following holds:

VaVyi .. . Vyp,3z(xRy: & ... & xRy, = xRz & zRy; & ... & zRy,).

By Sahlqvist Theorem (cf. [2]), we also have completeness:
PROPOSITION 2. The logics D4.2, Ly, Ly are canonical.
So we obtain

PROPOSITION 3. L; is determined by the class of all serial 2-dense frames,
L is determined by the class of all serial confluent 2-dense frames.

LEMMA 4. K4 + Ad, F Ad, for all n.

Proof. 1t is clear that K4 + Ads F Ady. A syntactic proof of K4 + Ads
Ad,, for n > 2 is rather easy and is left for the reader. Another proof is
based on completeness theorem for K4 + Ad,, and the observation that for
a transitive relation, 2-density implies n-density. |
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3 The finite model property
Let us first recall a simple lemma on selective filtrations.

DEFINITION 5. Let M be a Kripke model, ¥ a set of formulas closed
under subformulas.

A submodel M; C M (with the relation R;) is called a selective filtration
of M through W if for any « € M, for any formula A

QA€W & M,z QA= Ty € Ri(z) M,y F A.

LEMMA 6. If M, is a selective filtration of M through ¥, then for any
z € My, forany A e ¥

M,z EAs M,z F A.

Proof. By induction on the length of A. We consider only the case A = {B.
If M,z E OB, then by Definition 5, M,y E B for some y € Ry(z). So
M,y E B by the induction hypothesis, and thus M,z F OB.
Conversely, if My,z F OB, then M,y E B for some y € Ri(x) C R(x).
Hence M,y F B by the induction hypothesis, and thus M,z F OB. |

Now let us prove some useful properties of canonical models. First we
recall the maximality property of canonical models, cf. [3], [2]:

LEMMA 7. Let 9 be the canonical model of a modal logic A, and assume
that a formula B is satisfied in some x € M. Consider the set of all those
clusters in IMM®, in which B is satisfied:

Fr={CCMm®|3yeC Bey}.
Then M| YT contains a mazimal cluster (with respect to the relation <g).

Proof. By assumption, I' # @, and so due to Zorn Lemma, it suffices to
check that every <pg-chain X of clusters from I' has an upper bound in T.
Let

S:={A4|3C X Vye CUOAcy}U{B},

and consider two cases.

(1) Assume that .S is A-inconsistent. Then there exist clusters Cy,...,C, €
Y and points y; € C1,...,yn € C, such that B € y; for every i, and for
some formulas OA; € yq,...,0A4, € y, we have

(x) —(A1A...NA,AB) € A.
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Since ¥ is a chain, C,...,C, are <g-comparable, and we may assume
that C; is the <g-greatest among them. So for every ¢, y; Ry; or y; = y1.
But in the canonical model we have y; F OA;, and thus we obtain y; F
OA; A...ANDOA,. Then it follows that Cy is an upper bound of ¥X. In
fact, otherwise for some yo € R(y1) we have yo F A1 A... A A, A B, which
contradicts (*).

(2) Now assume that S is A-consistent. Then by Lindenbaum Lemma,
S C z for some z € M. Let Z be the cluster of z. By definition of S, Z € T,
and for any y € |JX we have yRz. Thus Z is an upper bound of X. |

LEMMA 8. Let A be a modal logic containing Ly, M a canonical model of
A. Let x € M, and assume that QAy,...,Q0A, € x. Let

Vi={y|aRy & Myk OAI A...AOA,}.
Then M|Y contains a mazimal cluster, which is non-degenerate.

Proof. Let B .= Q0A; N... N QA,. By Lemma 4, Ad,, € L;, and thus
ME B — OB. So we have MM, « F OB, which implies Y # & (Fig. 1).

. MyEOAIA...AOA,
. o

Ohy,... Ohn €T
Figure 1.
By Lemma 7, MM|Y has a maximal cluster C. Since 9 F B — OB, for

any z € C we have M,z F OB, and so there exists t € Y such that zRt.
But ¢t € C, by maximality of C. Therefore, C' is non-degenerate. |
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One can easily check the following

LEMMA 9. A finite frame F = (W, R) is 2-dense iff for any irreflezive
x € W with R(x) # @, there exists a unique successor cluster, which is
non-degenerate.

Let F; be the class of all finite 2-dense serial frames, and let
Fr:={F+C | F € F1,C is a finite non-degenerate cluster},

where + denotes the ordinal sum. Then we have
THEOREM 10. L; = L(F), L. =L(F).

Proof. (I) First consider Ly. Let uy be the class of Kripke models over
frames from F;. Given an Lj-consistent formula B, we have to construct a
a model M € p;, where B is satisfied.

Let 99t be the canonical model of L;, R the accessibility relation in 9.
Let us say that y € 9 realizes a formula QA if M,y F A (i.e., A € y). Since
B is consistent, we have 91, x¢9 F B for some zg. Let ¥ be the set of all
subformulas of B,

S={0A|0AcT}U{OT}.
For z,y € M let
zry:=(SNz=5SNy).
Note that zRy implies SNy C SNz, and thus z ~p y implies z =~ y.
For o € 9 let
Y, ={y € R(z) |z~ y}.
Then Y, is a union of clusters.

A point © € M is called critical if Vy € R(x) (v &y = ¢ ~g y), i.e., if
the cluster of x is maximal in Y. By Lemma &, for any = € 91 there exists a
maximal and non-degenerate cluster in Y, ; so we can choose a critical point
z' in Y,. We also assume that z' = x if z already is critical; thus " = '
for every .

Now we construct a required M by induction.

Stage 0. Put My := M|{zo, ( }-

It S = {0T}, the construction terminates at this stage, i.e., we take
M = My. Trivially, My is a selective filtration of 9 through ¥, and so
My, z9 F B by Lemma 6. My € pq, since j, is reflexive (in this case its
cluster is maximal in 907).

It S # {OQ T}, we store the new point in the set: X¢ := {z{}, and continue
the construction.

Stage (n+1). Assume that at stage n we have a model M,, C I, M,, € pq,
and a non-empty subset X,, C M,, such that for every x € M, the following
holds.
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(1) o' € Mp;
(2) if x € X,,, then z is critical;
(3) if o' &€ Xpp, A € SNz, then Jy € Ry (a’) A €y,

where R, is the accessibility relation in M,,. Every formula 0A € SNz is
called essential (for z). For a critical z, let S1(z) be the set of all essential
formulas that are realizable in the cluster of x:

Si(z) ={0AeSnNz|H~pz Act)

and let
Sa(z) = (SNzx)— S1(z).

Obviously, S1(z) # @, because T € . Now for every z € X,, we proceed
as follows.

If Si(z) = {QA1,...,0A,,}, then for i = 1,...,m we choose t; ~g «
such that A; € t;. Of course, it may happen that t; € M,, or ¢; = t; for
some different i, j.

Similarly, if Sz(x) = {0Bi1,...,0By}, then for i = 1,...,k we choose
21,...,2k € R(z) such that B; € z;. Let
Uy :={~1,...,2z} or U, = @ (if Sa(z) = @),

UL = {2 ] 2 € U},
Wy :=U, WU, U{t1,...,t,} (Fig. 2).

!

° 2} o 2 ... ° 2
T BQGZQT T
By €z © ° e ° By € 2
Aty Az €t A, €Etm
L4 )
.‘Q ° 4/'
OA;, OB; €

Figure 2.
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We define M,,+1 as the submodel of 9t obtained by adding all points of

U W, to M,. The relation in M, is defined as follows.
r€X,

e If a is reflexive then R, y1(a) :== R(a) N M4;.
e If a is irreflexive then R, 41(a) := R(a’) N Mp41.

One can easily check that R, 11 is transitive; note that for irreflexive a,
aR,11bR,11¢ implies @’ RbRe, and thus a'Re, i.e., aR,11c.

R, 11 is serial, since aR,11a'.

By Lemma 9, R, 11 is 2-dense; in fact, if a is irreflexive, then the cluster of
a' is the first in R,,41(a). Also note that R,, C R,,4+1, since R,,(a) is defined
in the same manner as R,1(a), and the case n = 0 is not exceptional.

Thus Mn+1 € 7.

Let X,,4+1 be the set of new critical points:

Xop1 = |J UL

z€EX,

Then properties (1)-(3) hold in M,4+1. In fact, (1), (2) are obvious.

To check (3), suppose © € M,+1, ' & X,+1. Then by construction,
x € My,. Since (3) holds for M,, and R,, C R, 1, it remains to consider the
case ' € X,. But then by construction, every essential formula is realizable

in My4+1 (in one of the points t1,...,tm, 21 -+, 2k)-
If X,,11 = @, the construction terminates at this stage, and we put
M = Mn+1.

According to the construction, if x € X,,, 0 B; € Sa(x), we have z; £ «,
and thus SNz; = SNz C SN, because x is critical. So the number of
essential formulas decreases at every step, more precisely:

max{[SNz| |z € X1} <max{|SNz||zeX,}.

Therefore the number of steps in the construction does not exceed the
cardinality of .S, and we obtain a finite model M.

Due to property (3), the resulting model M is a selective filtration of 9
through W¥. Since M, zg F B, we obtain M,z¢ F B by Lemma 6.

(IT) Similarly, in the case of Ly, consider the canonical model 9, an Lo-
consistent formula B; take a world x € 9, where B is satisfied. By Lemma
8, the cone 9* has a maximal and non-degenerate cluster C'. By Lemma 1
and Proposition 2, 91 is confluent, and thus C' is its final cluster.

As we are interested only in subformulas of B, consider the equivalence
relation on C:

rry=(TNez="¥nNy)
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and take a finite cluster C; C C containing all representatives under .
Then the submodel M’ C 91 obtained by adding the cluster C; to M
(constructed in the proof of (I)) is in p. In fact, the successor cluster of an
irreflexive x in M also fits for M'.

To show that M’ is a selective filtration of 9 through ¥, first note that
for x € M, all essential formulas can be realized within M. And for xz € C,
it A € xNP, then A € y for some y € C (since C is maximal), and by the
choice of ', there exists y; ~ y in C}.

Thus B is satisfiable in M'.

Let F' be the frame of M’, and put the copy of C; on the top of F'. The
new frame F" is in F>, since F' € F;. We also obtain that B is satisfiable
in F", since it is satisfiable in F", and there exists an obvious p-morphism
from F" onto F’, which identifies two copies of C}.

Therefore we obtain the inclusion L(F2) C Lz. The converse follows
easily, because every frame in F; is confluent, serial and 2-dense. ]

DEFINITION 11. A reflexive tree is a rooted poset (W, R), in which every
subset R~!(z) is a chain; a tree (in this paper) is frame, whose reflexive
closure is a reflexive tree. A frame F' is called a quasitree if its cluster frame
F/ ~p is a tree.

Now let G; be the class of all finite 2-dense serial quasitrees, and let
Go :={F+C | F € Gy, C is a finite non-degenerate cluster}.

We can give more specific characterizations of Li, Lo:

Proof. The inclusions G; C F; and G C F» imply L(G1) D Ly, L(G2) D
Ls. Thus to prove the first statement of Lemma, it is sufficient to show that
every rooted frame H = (W, R) € F; is a p-morphic image of some frame
from G;. First let us consider the cluster frame H; = H/ ~g. By standard
unravelling argument, we can present H; as a p-morphic image of a finite
tree H' consisting of all paths in Hy, cf. [2]. In more detail, H' = (W', R'),
where

W' = {(OO,...,Ck) | Co<pCi <p--<gr Ck},

Cp is the initial cluster in H;

aR'[ iff either § is a continuation of @ and a # 8, or & =  and the last
cluster of a is non-degenerate.

Then the map f : (Cy,...,Ck) — Cf is a p-morphism H' — H;. Now
consider a quasitree H* = (W*, R*), in which

W*:={(Co,...,Cr,w) | (Coy...,Cx) € W', we Cy},
(Co,-..,Ck,w)R*(Co,...,CJ,v) iff (Co,...,Ck)R'(Co,...,C)).
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Note that H* € G;, and we obtain a p-morphism g : H* - H such that
9(Co, ..., Cr,w) = w.

Next, for any finite non-degenerate cluster C, we can extend g to a p-
morphism ¢’ : H* + C - H + C. Since H* + C € G, this yields the second
statement. ]

4 Further completeness results

Let T, be the set of finite sequences of integers, T, the set of finite sequences
of numbers {1,2,...,n}. The sequences are ordered in a standard way:
01 C o9 iff 01 is an initial part of o5. Let 01 C o9 iff 01 C 02 and o1 # 09;
Tz := (12,0), T2 := (13, ).

A denotes the empty sequence; o102 denotes the concatenation of se-
quences o, and os.

Now let us extend the tree To by inserting an extra irreflexive point at
every edge. More precisely, this means the following.

For a non-empty 7 € Ts let 77 := (7,0). Consider the set

L =ToU{r |T€Ts, T#A}
Let < be the minimal transitive relation on I, satisfying the conditions:
o <|Ty =5;
e ifoceTy,ic{0,1}, 7=0i,theno <7~ <.

Let I := (I3, <), I‘{ := I + C7z, where C7 is a countable cluster (Fig. 3).
Since I, is 2-dense, we have
L(Iz) D Ly, L(I§) 2 Lo.

THEOREM 13. L(I;) = Ly, L(I}) = L,.

Proof. For a frame F' let Fy := E + F, where E is a reflexive singleton.
For ¢ = 1,2 let ’Cz = {FO | F e gt} Then Lt = L(lCz) In fact, ’C¢ g gz
implies L; C L(K;) (by Lemma 12). On the other hand, for any F € G;
there exists a p-morphism Fy — F' sticking E to the initial cluster of F'
(which is non-degenerate); therefore L; C L(K;).

Now to prove the inclusion L(Iz) C L; = L(K;), let us construct a
p-morphism from Iy onto an arbitrary frame G = (W, R) € K;.

Let F be the restriction of G to the set of reflexive points. It is well-known
[6], [12] that there exists a p-morphism f: Ty — F.

For a cluster C C F, let M¢ be the set of all minimal elements in f~1(C).
Obviously, M¢ # @.
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Figure 3.

Consider w € F, and let C(w) be its cluster. If w is not a root of G,
the cluster C(w) has a single < g-predecessor. Choose an element C'(w)~ in
this preceding cluster.

Let us extend f to f': Iy — G as follows: if f(a) = w, a # A, we put

rooN { C(w)~, if a € Mgy and C(w)~ is irreflexive,
flla™) = :
w, otherwise.
(Informally: f'(a~) = f(a), whenever this is possible.)

Let us show that f' is surjective. Due to the surjectivity of f, it is
sufficient to show that every irreflexive w € G is in the range of f'. So let
C be the (unique) successor cluster of w, z € Mc . Then C~ = w and by
definition f'(z) = w.

The monotonicity of f’ obviously follows from the monotonicity of f and
from the observation that f'(a™)Rf(«).

Let us prove the lift property for f’. Assuming f'(z)Rw, we have to find
y > x such that f'(y) = w. Consider different cases.

(1) ze€Ts, weF.
Then we can apply the lift property of f.

(2) z € Ty, w is irreflexive.
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Let C be the successor cluster of w,
Yi={y|zCy, ye fH(C)}

Since f has the lift property, Y is non-empty. Choose a minimal
ac€Y. Thenz<a, f'(a”) =w.

(3) @ is irreflexive, f'(z) € F.

Let £ = a~. By definition, f'(z) = f'(a). By the lift property of f,
there exists y > « > x such that f'(y) = w.

(4) Both z, f'(z) are irreflexive.

Let C be the successor cluster of f'(z), = a~. Then by definition,
f'(a) = f(a) € C. Thus f(a)Rw and by the lift property of f, we
have y > a > z such that f'(y) = w.

Therefore f' : Io — G, and the first assertion of Theorem follows from
P-morphism Lemma and Lemma 12.

Finally, since a finite cluster C' is a p-morphic image of the infinite cluster
Cyz, we can extend f’ to a p-morphism I — G+C. This yields the inclusion
L(I3) C L(Ks) = La. u

Now recall the definitions of causal and chronological future relations (=,
<) in Minkowski spacetime R" (where n >2):

n—1
(‘Tla"'axn) j (yla"'1yn) = Z(yi —CCi)2 S (.’En _yn)z & L S Yns
i=1

n—1
@1,y @n) = W1 yn) € D> (Wi —20)° < (@0 —yn)® & T <y
i=1
Let MF}y = (R", <), MFZ = (R", <).
From [6], [12] it is known that L(MF}}) = S4.2 for any n > 2. Our next
aim is to describe L(MFE).
The following soundness lemma is proved easily [6]:

LEMMA 14. L(MEZ) D Ly for n > 2.

To prove the converse, we begin with the two-dimensional case.
Let us introduce some notation. pry and pr, denote the standard projec-
tions R2 — R; pr;(z1,22) := ;.
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Let P,Q € R?, P # @, pry(P) = pry(Q). Take the lower isosceles right
triangle! PRQ with the right angle at R and subtract its hypotenuse [PQ)].
Let
V(PQ) := PRQ\[PQ),

K(PQ) :=[RQ]U[RP].

For m € Z define the points S,, (PQ) on the segment [PQ)] as follows:
So(PQ) is the middle of [PQ)],

Sm(PQ) is the middle of [PSp,4+1(PQ)] for m < 0,
Sm(PQ) is the middle of [Sy,—1(PQ)Q] for m > 0.
For z € R?, M C R? let

hw) = [pry(@)], h(M) i= sup{h(z) | z € M}.
Now fix the points A := (—1,0), B := (1,0), C := (0,—1), and the
corresponding open triangle together with the vertex C-:
V := (V(AB)\K(AB))U {C}.
LEMMA 15. 2 There exists a p-morphism (V,<) — I.

Proof. Our construction is a modification of those from [6], [12].
For o € Ty we define points A, B? by induction on the length |o|. Put
AN .= A, B* .= B,

A = S, (A°B7), B°™ := Sp4+1(A7B7), where m € Z;

V7 :=V(A°B%), K* :=K(A°B°), W := | J V'™,
meZ

and let C7 be the lower vertex of V.
One can easily check the following:

(].) 01 Eop & Vo DVo2,
(2) V*NV?2 #3& = 01 Cog or 09 C 0.

Note that
h(V*) =1,
h(Vo™) < h(V0) = %h(va), and thus

(V7)< 471l (W) = B(VI°) < 47lel=L

Since h(z) > 0 for any = € V, there exists the longest sequence o, such
that x € V7=; then z € W= Due to (2), (1), o, is unique. Since z € V7=,
we have

LAl triangles are considered as closed domains on the plane.
2 A more accurate notation for (V, <) should be (V, < |V).
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(3) < (z) CVo=.

Now we define the map f: V — I, as follows.
Ifz #Cand oy, = my...my, 1 > 032, put 7, := 7y ..., where
m € {1,2}, m = m (mod 2). Let

7, if @ is an interior point of V7=;
fly:=¢ X ifaz=0C;
7, otherwise.

For z € K% put f(z) = 7, , otherwise f(z) = 7, (Fig. 4).

A° Ao’,—l Bo-,_]_ :Aao Bo’O Bo

Figure 4.

Let us show that f is a p-morphism.

To check monotonicity, assume z < y. (3) implies that y € V?=. Then
y € V7*NV7%, and so o, C oy or o, C g,, by (2).

If 0y C 04, then W D V¢, which contradicts y € V7=,

If o, C oy, then 7, C 7y, and thus 7,7 <7, <7, <7y, which implies
fl@) < f(y)-

If o, = 0y, then f(z) = 7, or f(z) =7, , f(y) = 7, and again f(z) <
f(y).

To check the lift property for f, assume f(z) <v, where v =a orv=a~
for some a € T, 0, = my ... My, @ =1y ...1.

We have to find y > x such that f(y) = v. Now there are two cases:
l=Fkorl>k.

Suppose [ = k. Since o~ is irreflexive, we have v = a = 7.

Let [zz1] be the perpendicular to [AB], |zz:[:=]zz1[ \W=, and let y be
the middle of |zzo[ (Fig. 5).

3If L =0, my ...my means .
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Figure 5.

Then obviously z < y. Since y € V7=, y € W=, we obtain o, = oy,
fly) =1 =w.

Now suppose I > k. Due to the transitivity of < and <, it is sufficient to
consider only the case | = k + 1. Then a = 7,14;.

Since & € W= for some division point = A%=™ we have x < @
(otherwise < (z) C V7= for some m). Put

r [ m if m = 4;(mod 2),
=l m—1 otherwise,

and let p := o,m’. Then @ is the right or the left vertex of V#. Since
z < Q, for some u € K?, we have z < u.

Let [uz;] be the perpendicular to [AB], Juzz[:=]uzi[ \W?, and let y be
the middle of Juzs[ (Fig. 6).

& Q = %™

Figure 6.

Then we have z < u <y, 7y = 7y = @, and thus f(u) = a~, f(y) = a.
Therefore f(u) =v or f(y) = v. [ |



452 Ilya Shapirovsky and Valentin Shehtman

THEOREM 16. L(MF2) = L.

Proof. Let F = MFZ. Since L(F) = () L(F*) and all cones F** are
z€R2
isomorphic, we have L(F') = L(F*®).
So consider the cone G = F(%~1) In view of Theorem 13, it is sufficient
to construct a p-morphism G — I = I + Cy.
We extend the p-morphism f : V — I from Lemma 15 to f': G — I

as follows. fw it
by x) ifzeV,
f (.’IZ) T { Cm(x) if x Q V.
Here we assume that Cz := {¢, | n € Z}; for x € G m(z) denotes the
integer part of pry (z). Then one can easily check that f’ is a p-morphism;
note that if # ¢ V, then < (z) contains points y with arbitrary m(y). H

THEOREM 17. L(MF}) =Ly for any n > 2.

Proof. Similar to [6]. Let p be the projection R* x R — R x R:

P(T1, . Tut1) = (T, Tpg1)-

It is easily seen that p maps a <-cone onto a <-cone, and thus p : MF¢# —»
MF}, whence
L(MF}) CL(MFZ) = La.

On the other hand, L(MF&) D Lg by Lemma 14. [ ]

Now let us consider logics of some domains on the plane with the relation
<. Let us first prove a generalization of Lemma 15.

Let PRQ) be a right triangle, in which pr, (P) < pry(Q), ang(RP) =
ang(RQ) = /4, where for a straight line [, ang(l) denotes the (smallest)
angle between [ and the z-axis.

Let F' be a real-valued differentiable function whose domain contains
[pry (P),pr;(Q)], and assume that

Vo € Jpr (P),pr (@) [F'(z)] < 1.

Also assume that 7 is the graph of F', and P,Q € . Then from Lagrange
theorem we obtain that yN |RP[ =yN |RQ[ = @.
Let D be the open domain bounded by [RP], [RQ] and 7, and let

Ve(PQ):= DU{R}, Vp:=DU{R} U |PR[ U |RQ]|.

LEMMA 18. There exists a p-morphism (Vg (PQ), <) — Ia.
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Proof. Let A = P, B = @, and for 0 € Ty consider the same division
points A%, B? € [P(Q)] as in the proof of Lemma 15. Take the corresponding
points on the curve 7:

Af = (pr1 (A7), F(pr,(A7))), B := (pr1(B?), F(pr,(B))),

and let

V= Vp(ALBS), W= | Vo™
MEZ

Similarly to Lemma 15, we obtain that for every z € Vg (PQ) there exists
a unique sequence o, such that x € V= and « ¢ W=

So we can define a map f : Vp(PQ) — I in the same way as in Lemma
15. Namely, for o, = my ...my, put 7, := 1 ...my;. The definition of f is
as follows (Fig. 7).

Figure 7.

7, if @ is an interior point of V7=;
fly:=¢ A ifz=R;

T, otherwise.

By the same argument as in Lemma 15, one can show that f is a p-
morphism. |

THEOREM 19. Assume that X is an open convex polygon in R2. Then
L(X, <) is either Ly or L.
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Proof. (Cf. [12]). Let V be the highest vertex of X, and let A and B be
the vertices of X that are adjacent to V.
There may be two cases:

(1) ang(AV) < § or ang(BV) < T;

ln

(2) ang(AV) > % and ang(BV) > .

N

Consider the first case. Assume that for example, ang(AV) < 7 (Fig. 8).
Take the linear function ¥ : R — R with the graph AV. Take two

Figure 8.

points P, Q € [AV] such that Vg (PQ) C X. Then Vi (PQ) is a generated
subframe in (X, <), and thus by Lemma 18,

L(X,<) C L(V#(PQ),<) C Ly.

One can easily see that (X, <) is serial and 2-dense, and thus we obtain
L(X,<)=L;.

In the case (2), take an interior point R in the triangle AV B (Fig. 9).
Then there exist points P € [AV], @ € [BV] such that ang(RP) =
ang(RQ) = 4. The cone Y := XN < (R) can be presented as ¥ =
V(PQ)U D, where D = PQV\([PV]U[QV]).

Let us show that Y can be p-morphically mapped onto I + Cy, where
Cy is a countable cluster. By Lemma 18, there exists h : V(PQ) — I3, so
let us prolong h to Y. Assume that (A,,) is a sequence of points from D
converging to V. Consider the infinite sequence of natural numbers taking
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b

Figure 9.

every value infinitely many times, for instance (s,) = 1121231234 .... Let
Cn =Aco, c1, ¢2,...}. Then put

h(4,) :=cs,-

For all other points B € D put h(B) := ¢g. A straightforward argument
shows that p: Y — I, + Cy. Therefore,

L(X,<) CL(Y) C Ly.

Since X is convex, the condition (2) implies that the frame (X, <) is con-
fluent, and thus L(X, <) D Ls. [ |

THEOREM 20. Let X be an open connected domain in R? bounded by a
closed smooth curve. Then L(X, <) = L.

Proof. Let v be the boundary of X. Due to smoothness, it can be presented
as {(z(t),y(t)) | t € [0,1]}, where z(t) and y(¢) are smooth functions on
[0, 1] such that for any ¢, (&(t),y(t)) # (0,0). Let C = (x(t0), y(to)) be the
highest point of  (which may be not unique). Then y(tg) = 0, @(to) # 0,
and without any loss of generality, we may assume that &(tg) > 0, to #
0, to # 1. Since the derivatives & and ¢ are continuous, there exists an
interval ]t1,t2[2 to, where &(t) > €, |9(t)| < € for some € > 0. Then z(t)
is invertible in this interval, and the corresponding part of 7 is a graph of
some function F' : |z, z2[—> R, where z; = z(t1), z2 = z(t2). Now it
follows that |F'(x)| = |9(t)/2(t)] < 1 for z €]xy, z2].
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We can choose points P, () in this part of v such that Vp(PQ) C X.
Since Vp(PQ) is a cone in (X, <) and by Lemma 18, we have

L(X><) - L(VF(PQ)><) CL.

It remains to note that L(X, <) is 2-dense. In fact, for any z € X there
exists an open disk U C X containing z. Then every two points y, z €< ()
are <-accessible from some u € UN < ().

Thus L(X, <) D L. |

5 Conclusion

Logics of relativistic time studied so far are examples of many-dimensional
modal logics that are rather simple from the computational viewpoint. To
say more on that topic, let us recall the connection between relativistic
modal logics and modal products [13].

Consider the product frame
(R,<)? = (R, <) x (R, <) := (R?, Ry, Rs),
where
(z,y)Bi(a',y) &z <o’ &y=y';
(z,y)Re(2’,y) &z =2"&y <y

The logic of L((R, <)?) is known to be II}-complete, and therefore it is not
recursively axiomatizable [11], [4]. But our Ly is its rather natural decidable
fragment. In fact, the frames (R?, Ry o Rs) and (R?, <) are isomorphic; an
isomorphism is given by rotation. Thus the corresponding logics can be
identified by translation ¢ from 1-modal to 2-modal formulas reading O as
Dl Dz:

COROLLARY 21. Ly = {A | (R, <)? F ¢(A)}.

The proofs in Section 4 easily transfer to the rational case, and in the
same way we obtain:

COROLLARY 22. L, = {4 | (Q <)% F ¢(A4)}.

Note that the whole logic L((Q, <)?) is undecidable [11], [4], but unlike
the real case, it is recursively enumerable and coincides with the correspond-
ing product of modal logics L(Q, <) x L(Q, <) [13], [4]

It remains a serious open problem, whether all “p-fragments” of products
of linear modal logics are decidable. Probably, the most interesting unknown
case is L(Z, <) x L(Z, <). A related question [6] is about properties of the
logic of discrete Minkowski spacetime (which coincides with L((Z, <)?)).

The above two corollaries can be reformulated in terms of classical first-
order theories in the style of [5]. Viz., consider the first-order language £
with binary predicates <, Py, Ps,... Every 1-modal propositional formula
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A translates into an L-formula A*(z,y):
p:z(x:y) = Pn(xvy)a
1*:=1,
(A— B)* := A* - B*,
QA*(z,y) :=Fx13y1 (v < x1 ANy <y1 A A*(z1,y1)).
Let Th*(W,<) be the L-theory of all structures (W, <,...) with fixed
(W, <) and varying interpretations of Py, P,,... Then we obtain

COROLLARY 23. Ly = {A | Th2(R,<) b A"} = {A | Th*(Q <) F A*}.

One can show that the same logics arise in the many-dimensional case. In
fact, consider the n-dimensional product (R, <)" = (R", Ry, ..., R,,), where
(1, zn)Ri(yr, . yn) i 2 < ys & Vj # 4 25 = y;. Then a standard
projection is a p-morphism p : (R, <)" — (R, <)2.

Let ¢, be translation from 1-modal to n-modal formulas interpreting O
as [y ...0,. Then similarly to Corollaries 21, 22, we have

COROLLARY 24. Ly = {A | (R, <)" E 0n(4)} = {4 ] (@ <)" E pn(A)}.

This Corollary also has a classical analogue similar to Corollary 23; we
leave the precise details for the reader.

The logics L1, Ly can also be interpreted as fragments of interval temporal
logics. Logics of intervals have motivations in Computer Science, Linguis-
tics, and Philosophy; the reader is addressed to [9] for further references and
a brief overview of this area. Let us recall that there are 13 basic relations
between intervals in a linearly ordered set, and the corresponding full modal
logic of these accessibility relations is undecidable, according to the result
by Halpern and Shoham [8]. This happens in most cases, in particular, for
integers, rationals, and reals.

On the other hand, for rational and real time, as stated in [13], some
natural fragments of interval logics are equivalent to the well-known systems
S4, S4.2. A similar property holds for Ly, Ly. In fact, let I(W, <) be the
set of all nontrivial closed intervals (segments) in a linearly ordered set
(W,<). Obviously, we can identify I(W, <) with the half-plane {(z,y) €
W2z <y}

Consider the following relations between intervals.

(1,91) C (22,y2) =22 < 21 & Y1 < Y2 (“during”);

(x1,y1) < (@2,y2) := 1 < x2 & y1 < y2 (“weakly earlier”),

and their converses D, >. (Note that < is not among the basic 13 relations,
because > is the union of “later than” and “overlaps”.) Fig. 10 shows the
points of I(W, <) accessible from a certain point by these relations. So we
can see that on the real plane the cone G is isomorphic to the triangle
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I(R, <)
=y
J D Jo J > Jy
Jo
Figure 10.

(V, <) considered in Section 3, and thus its logic is L;. Three other cones
are confluent, and their logic is L,. The case of rationals is completely
analogous. So we obtain

COROLLARY 25. Let P = (R, <) or (Q,<). Then
L(I(P), D) = L,
L(I(P),<) = LU(P),>) = L(I(P),C ) = Ls.

Finally let us make some remarks on the computational complexity of
L1, Ly. It is well-known that their reflexive analogues S4, S4.2 are PSPACE-
complete [2]. Our proof of the f.m.p. in Section 3 motivates the same com-
plexity bound for L, La. The corresponding result recently proved by the
first author will be published in the sequel.

Also note that there probably exists an alternative proof of the f.m.p.
based the method from [2] (Theorem 11.52). However this method does not
provide a good complexity bound.

There remain many open problems in the field. For example, nothing is
known about decidability, complexity and expressive power of relativistic
polymodal logics. The same questions certainly make sense in the context
of general relativity theory (a brief discussion can be found in [1]) or for
many-dimensional analogues of interval logics. So there is enough room for
further investigations of spacetime logics.
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