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abstract. We introduce a class of propositional modal logics axiomatized
by infinite sequences of formulas in special form. Two logics of this type are
known from [10] and [13]. Although the axioms are beyond Sahlqvist class
and its generalization defined in [8], all the resulting logics are still complete
with respect to elementary classes of frames. For two particular examples
of these logics related to the McKinsey axiom, we also study elementarity
and finite model property.

1 Introduction

The starting point for our research is the well-known Sahlqvist Theorem.
For about thirty years this result was considered as the strongest one giving
a syntactic sufficient condition for completeness and first-order definability
(elementarity) in modal logic. More recent studies show that Sahlqvist class
can be extended to a larger class of “inductive” modal formulas inheriting
both completeness and elementarity [8].

Now there is natural question: what happens beyond this new class? It
is well-known that completeness or definability may be lost. Perhaps the
simplest counterexample is given by the McKinsey axiom �3p → 3�p,
which is non-elementary, but still complete and even has the finite model
property. So after a slight variation of Sahlqvist formulas we may still hope
to preserve at least some of nice properties.

On the other hand, recently Ian Hodkinson has found a precise descrip-
tion of quasi-elementary logics (i.e. those complete with respect to elemen-
tary classes of Kripke frames) [9]: he defines a translation from a first-order
theory T into a set of hybrid modal formulas, and next – into a set of pure
modal formulas axiomatizing exactly the class of models of T . Moreover,
the corresponding hybrid formulas are identified as “quasipositive”. This
general result is quite impressive, but the suggested axiomatization method
may be not optimal in particular cases.

The class of modal logics studied in this paper is certainly covered by
Hodkinson’s theorem, but we propose a simpler description, which does
not directly follow from [9]. Namely, consider different versions of a modal
formula ϕ(p1, . . . , pk) with disjoint sets of proposition letters:

ϕ′ = ϕ(pk+1, . . . , p2k), ϕ′′ = ϕ(p2k+1, . . . , p3k), . . .

and put
ϕn

3
= 3(ϕ ∧ ϕ′ ∧ · · · ∧ ϕ(n−1)),
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L3(ϕ) = K + {ϕn
3
| n ≥ 0}.

As we show, every logic L3(ϕ) is quasi-elementary, whenever ϕ is a Sahlqvist
formula (or even an inductive formula). By Fine – Van Benthem Theorem
(cf. [4, Theorem 10.19]) this implies canonicity. An appropriate first-order
condition can be obtained in a standard way:

∀x∃t(xRt ∧ Φ(t)),

where Φ is the first-order correspondent of ϕ, i.e. “every world sees a ϕ-
world”. However this condition does not always characterize the frames for
L3(ϕ) — in general we cannot state that this logic is elementary, and it
may be non-axiomatizable by inductive formulas. On the other hand, we
show that it is finitely elementary, i.e. all its finite frames satisfy the above
mentioned condition.

Also note that L3(ϕ) is the union of the increasing sequence of logics
Ln

3
(ϕ) = K + ϕn

3
, so it may be not finitely axiomatizable.

Two examples of such logics have been known from the literature, both
are non-elementary and non-finitely axiomatizable.

The first logic L3(�p → p) was introduced and studied by Hughes [10],
who also proved the finite model property and decidability.

The second example is Lemmon’s logic KM∞ = L3(3p → �p) [13].
This logic is even worse in some respect — recent results show that although
KM∞ is canonical itself, it cannot be axiomatized by canonical formulas
and all the logics K + ϕn

3
are not canonical (for ϕ = 3p → �p) [7]. Note

that ϕ1
3

= 3(3p1 → �p1) is an equivalent form of the McKinsey axiom,
for which the non-canonicity was obtained earlier [6]. To add to the list
of negative results, we show that any logic between K + ϕ1

3
and KM∞ is

non-elementary. On the other hand, KM∞ has the fmp, by Fine’s Theorem
on uniform logics, cf. [4]. This result can be improved and in fact KM∞

is PSPACE-complete, as we are going to show in the second part of this
paper.

In this paper we also consider a third example, viz. Lfwω = L3(p→ �p).
This logic happens to be “more regular”: it is canonical, elementary and
modally defines “McKinsey property” (which is a first-order equivalent of
the McKinsey axiom in the transitive case, cf. [2]; moreover, Lfwω is finitely
axiomatizable, has the fmp and therefore is decidable (and as we shall prove
in the sequel, PSPACE-complete)

Note that all our logics are axiomatized by modal formulas of the form
3(ϕ1 ∧ · · · ∧ ϕn), where ϕi are “good” (say, Sahlqvist). The use of only
3 and ∧ seems “relatively safe” in this context, and so there is a hope to
extend our results to a larger class of formulas. In the final section we briefly
discuss some further results and related open problems.

2 Basic concepts

We assume the reader is familiar with tools and techniques in modal logic
such as the canonical model construction and the filtration method. We also
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assume the reader is at home with well-known results such as Sahlqvist’s
theorem and Ladner’s theorem. For more on these see Blackburn, de Rijke
and Venema [3], Chagrov and Zakharyaschev [4] and Kracht [11]. Still in
this Section we recall some basic notions, for the sake of terminology and
notation.

2.1 Syntax

Let PV = {p1, p2, . . . } be a countable set of proposition letters, with typical
members denoted by p, q, etc. Modal formulas over PV are built using the
constant ⊥, the unary connective � and the binary connective →. Other
constructs are defined as usual, in particular 3ϕ is the abbreviation for
¬�¬ϕ.

For a formula ϕ, cl(ϕ) denotes the set of all subformulas of ϕ. Put
PV (ϕ) = cl(ϕ) ∩ PV . The notation ϕ(p1, . . . , pn) means {p1, .., pn} ⊇
PV (ϕ). For formulas ψ1, . . . , ψn, ϕ(ψ1, . . . , ψn) denotes the result of si-
multaneous substitution of ψ1, . . . , ψn for p1, . . . , pn in ϕ. For a set x of
formulas, let x� = {ϕ | �ϕ ∈ x}.

A (normal) modal logic is a set L of formulas that contains all tautologies,
the formula �(p→ q)→ (�p→ �q) and that is closed under the standard
rules: Modus ponens, Uniform substitution, and Generalization (given ϕ
infer �ϕ).

For a set Γ of formulas, L+Γ denotes the smallest modal logic containing
(L ∪ Γ).

A formula ϕ is said to be L-deducible from a set Γ of formulas, in symbols
Γ `L ϕ if there exists formulas ϕ1, . . ., ϕn ∈ Γ such that (ϕ1 ∧ . . . ∧ ϕn →
ϕ) ∈ L. A set Γ of formulas is called L-consistent if Γ 6`L ⊥.

Recall the inductive definition of uniform modal formulas. Any formula
without modal operators is a uniform formula of degree 0; uniform formulas
of degree n+ 1 are built from the set

{�ψ | ψ is a uniform formula of degree n}

using boolean connectives.

A logic is called uniform if it can be axiomatized by uniform formulas.

2.2 Semantics

As usual, a (Kripke) frame is a pair F = (W,R), where W is a non-empty
set of worlds and R is a binary relation on W . A world x ∈W is called final
in F if R(x) ⊆ {x} and deterministic in F if card(R(x)) ≤ 1. F is called
serial if for all worlds x in W , R(x) 6= ∅.

For a world x in W and sets W1, . . ., Wn ⊆W , we say that {W1, . . . ,Wn}
is a cover of R(x) if R(x) ⊆W1 ∪ · · · ∪Wn.

A (Kripke) model based on F is a pairM = (F , V ), where V is a function
assigning to each proposition letter p a subset V (p) of W . The inductive
definition of the truth value of a formula ϕ at a world x in a model M is
standard. M, x � ϕ denotes that ϕ is true at x in M.
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A formula ϕ is called true (respectively satisfiable) in a model M =
(W,R, V ), in symbols M � ϕ, if ϕ is true at any (resp., some) world in
W ; ϕ is valid in a frame F , in symbols F � ϕ, if ϕ is true in all models
based on F . ϕ is valid at F , x (notation: F , x � ϕ) if it is true at x in all
models based on F . A formula ϕ is said to be valid in a class C of frames,
in symbols C � ϕ, if ϕ is valid in all frames in C. We say that a set L of
formulas is valid in a frame F , in symbols F � L, if all formulas from L are
valid in F .

Every frame can also be regarded as a first-order structure, and we use
the same sign � to denote the truth of a first-order formula in this structure.

The modal logic of a class of frames C is defined as L(C) = {ϕ | C � ϕ}.
A logic L is called complete with respect to C if L = L(C). L is said to have
the finite model property (fmp) if it is complete with respect to a class of
finite frames.

We say that a set of modal formulas Γ modally defines the class of frames
Fr(Γ) := {F | F � Γ}; Γ modally defines C within a class C ′ if C = Fr(Γ)∩C′.
We say that a formula ϕ modally defines C [within C ′] if the set {ϕ} does.

A modal logic L is called strongly complete with respect to a class C of
frames if for any L-consistent set Γ of formulas, there exists a model M
based on a frame from C such that all formulas from Γ are simultaneously
true at some world in M.

Recall that a formula ϕ is locally elementary if for some first-order formula
Φ with only one free variable t we have: for any frame F and any world
a in F , F , a � ϕ iff F � Φ(a). In this case Φ is called a local first-order
correspondent of ϕ.

A set Γ of modal formulas is called elementary (respectively, ∆-elementary)
if the class Fr(Γ) is elementary (respectively, ∆-elementary), i.e. if Fr(Γ) is
the class of models of some first-order formula (resp., theory). Every locally
elementary formula is obviously elementary.

A modal logic of the form L(C), for an elementary C, is called quasi-
elementary (or elementarily generated).

3 Every world can see a ϕ-world

In this section we describe a family of quasi-elementary and finitely elemen-
tary logics.

For a tuple of proposition letters p = (p1, . . . , pk) let

pn := (pkn+1, . . . , pkn+k)

for n ≥ 0. So p0 = p and all the tuples pn are disjoint.
For a modal formula ϕ(p) put

ϕn
3

:= 3(ϕ(p0) ∧ · · · ∧ ϕ(pn−1))

(in particular, ϕ0
3

:= 3>), and also

L3(ϕ) := K + {ϕn
3
| n ≥ 0},
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Ln
3

(ϕ) := K + ϕn
3
.

The following is rather trivial.

PROPOSITION 1. L0
3

(ϕ) ⊆ L1
3

(ϕ) ⊆ L2
3

(ϕ) . . . ⊆ L3(ϕ).

Now let ϕ be a locally elementary formula, and let Φ(t) be its local first-
order correspondent. Consider the class of frames

C3(ϕ) := {F | F � ∀x∃t(xRt ∧ Φ(t))}.

LEMMA 2. For a locally elementary formula ϕ, C3(ϕ) ⊆ Fr(L3(ϕ)).

Proof. Suppose F ∈ C3(ϕ(p)). This means that for any a ∈ F there
exists b ∈ R(a) such that F � Φ(b), which is equivalent to F , b � ϕ, by
the definition of Φ. But the latter implies F , b � ϕ(pn) for any n, hence
F , a � ϕn

3
, and thus F , a � L3(ϕ). �

A formula ϕ is locally d-persistent if for any descriptive (general) frame
(F ,D) and any world a, (F ,D), a � ϕ implies F , a � ϕ (the notion of a
descriptive frame is defined in a standard way, see e.g. [4]).

THEOREM 3. Let ϕ be a locally elementary and locally d-persistent modal
formula. Then

1. the canonical frame for L3(ϕ) is in C3(ϕ);

2. L3(ϕ) is canonical and therefore strongly complete with respect to
C3(ϕ).

Proof. Let us prove (1); then (2) readily follows from Lemma 2 and the
properties of the canonical model.

Let F = (W,R) be the canonical frame for L3(ϕ(p)), p = (p1, . . . , pk).
For any a ∈W , put

a+ := a� ∪ {ϕ(ψ1, . . . , ψk) | ψ1, . . . , ψk are arbitrary modal formulas}.

Claim 1 a+ is L3(ϕ)-consistent.
Suppose the contrary. Then for some formulas γ1, . . . , γm ∈ a� and for

some k-tuples of formulas ψ1, . . . , ψn we have L3(ϕ) ` γ1∧· · ·∧γm∧ϕ(ψ1)∧
· · · ∧ ϕ(ψn)→ ⊥.

Since 3(ϕ(ψ1) ∧ · · · ∧ ϕ(ψn)) is a substitution instance of ϕn
3

, we have
3(ϕ(ψ1)∧· · ·∧ϕ(ψn)) ∈ a, so for some b ∈ R(a) we have ϕ(ψ1), . . . , ϕ(ψn) ∈
b. Since every γi is in a�, we also have γ1, . . . , γm ∈ b, so ⊥ ∈ b, which is a
contradiction. Q.e.d.

By the Lindenbaum Lemma, there exists b ∈ W such that a+ ⊆ b. So
a� ⊆ b, thus aRb.

Now consider the general canonical frame (F ,D) for L3(ϕ); recall that

D = {V0(ψ) | ψ is a modal formula},
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where V0 is the canonical valuation.
Claim 2 (F ,D), b � ϕ.
In fact, for a valuation V in (F ,D) let us show that b ∈ V (ϕ). By

definition of D, for every i there exists a modal formula ψi such that V (pi) =
V0(ψi); let ψ = (ψ1, . . . , ψk). Then by induction it follows that

V (ϕ(p)) = V0(ϕ(ψ)).

But b ⊇ a+, so ϕ(ψ) ∈ b, and thus b ∈ V0(ϕ(ψ)) = V (ϕ). Q.e.d.
Since (F ,D) is descriptive and ϕ is locally d-persistent, from Claim 2 we

obtain F , b � ϕ, i.e. F � Φ(b); thus F � ∀x∃t(xRt ∧ Φ(t)). �

For a set Γ of modal formulas we can also define

L3(Γ) := K + {ϕn
3
| ϕ ∈ Γ, n ≥ 0},

C3(Γ) :=
⋂

ϕ∈Γ

C3(ϕ).

So we have

COROLLARY 4. If Γ is a set of locally elementary and locally d-persistent
modal formulas, then L3(Γ) = L(C3(Γ)).

COROLLARY 5. If Γ is a set of inductive modal formulas, then L3(Γ) =
L(C3(Γ)), and thus this logic is canonical and strongly complete with respect
to C3(Γ).

Proof. In fact, every inductive formula is locally elementary and locally
d-persistent [8]. �

DEFINITION 6. A modal logic L is called finitely elementary if there exists
a first-order formula Φ such that for any finite frame F , F � L iff F � Φ.

THEOREM 7. If ϕ is a locally elementary modal formula, then L3(ϕ) is
finitely elementary.

Proof. For a formula ϕ(p), p = (p1, . . . , pk) with a local first-order corre-
spondent Φ, let us prove that F � L3(ϕ) iff F ∈ C3(ϕ) for any finite frame
F . The direction “if” is already proved in Lemma 2.

So consider a finite frame F = (W,R) with card(W ) = n, such that
F � L3(ϕ). We have to show that F � ∀x∃t(xRt ∧ Φ(t)).

Consider the following Kripke model M = (F , V ). Take the N -element
set P(W )k of all k-tuples of subsets of W (where N = 2nk) and put it in
some order: W0,W1, . . . ,WN−1. If Wj = (W j

1 , . . . ,W
j
k ), we define

V (pjk+i) := W j
i .

So we have defined V (pm) for m = 1, . . . , Nk, and we assume that V (pm)
is arbitrary for all other m.
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Now take any a ∈ W . Since M, a � ϕN
3

, there exists b ∈ R(a) such
that M, b � ϕ(p0) ∧ · · · ∧ ϕ(pN−1). Then we claim that F , b � ϕ. In fact,
consider an arbitrary valuation V ′ in F . By our construction, there exists
j such that Wj = (V ′(p1), . . . , V ′(pk)), i.e.

V ′(pi) = V (pjk+i)

whenever 1 ≤ i ≤ k. Hence by induction it easily follows that

V ′(ϕ(p)) = V (ϕ(pj)).

Now since M, b � ϕ(pj), we obtain (F , V ′), b � ϕ. Thus F , b � ϕ, which is
equivalent to F � Φ(b). Eventually F � ∀x∃y(xRy ∧ Φ(y)). �

The following simple fact is motivated by Proposition 6.2 from [9], though
it is not formulated explicitly in that paper.

PROPOSITION 8. If a recursively axiomatizable and finitely elementary
modal logic has the fmp, then it is decidable.

Proof. In fact, if finite frames for L are defined by a certain first-order sen-
tence, then the set of finite L-frames (whose worlds are identified with inte-
gers) is decidable. Together with the fmp, this implies the co-enumerability
of L. So since L is recursively enumerable, it is decidable. �

Note that in general a recursively axiomatizable logic with the fmp can
be undecidable (the three-dimensional logic K3 is a typical example), but
this does not affect the logics considered in the present paper.

4 Every world can see a final world

4.1 Definitions

In this section we consider a particular case of the above construction, when
ϕ = (p1 → �p1). The corresponding first-order formula is Φ(t) = ∀x(tRx→
t = x).

Let
αn := ϕn

3
= 3((p1 → �p1) ∧ . . . ∧ (pn → �pn)).

Consider the modal logics (for 0 ≤ n < ω):

Lfwn := K + αn, L
fw
ω := L3(ϕ) = K + {α0, α1, . . .}.

Note that Lfw0 = D = K + 3> and Lfw1 = K + 3(p → �p) = K + �p →
3�p. Then C3(ϕ) is the class Cfwω of all frames F = (W,R) satisfying
possible finality condition1

• for all worlds x in W , there exists a world y in R(x) such that R(y) ⊆
{y},

1In the transitive case it is also called “McKinsey property” [14]
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i.e. every world can see a final world.
Let us also consider for every n ≥ 0, the class Cfwn of all frames F =

(W,R) such that

• for all worlds x in W and for all covers {W1, . . . ,Wn} of R(x), there
exists a world y in R(x) such that for all i in {1, . . . , n}, if y ∈ Wi

then R(y) ⊆Wi.

PROPOSITION 9. Cfw0 ⊇ Cfw1 . . . ⊇ Cfwω .

Proof. Trivial. �

4.2 Weakly condensed frames

Remark that Cfw0 is nothing but the class of all serial frames and Cfw1 is the
class of all weakly condensed frames F = (W,R), i.e. such that:

• for all worlds x ∈W , there exists y ∈ R(x) such that R(y) ⊆ R(x).

For a frame F = (W,R), consider the relation R→ ⊆ R:

xR→y := {y} ∪ R(y) ⊆ R(x)

Thus F is weakly condensed iff (W,R→) is serial. One can easily see that
R→ is transitive: if xR→yR→z, then R(z) ∪ {z} ⊆ R(y) ⊆ R(x).

By a straightforward argument, F is weakly condensed iff F � α1. Since
the Sahlqvist formula �p→ 3�p is an equivalent form of α1, we obtain

LEMMA 10. If F is the canonical frame for a logic L ⊇ Lfw1 , then F is
weakly condensed.

4.3 Completeness

THEOREM 11. The canonical frame for Lfw2 is in Cfwω .

Proof. Let F = (W,R) be the canonical frame for L = Lfw2 .
For any x ∈W , put x+ := x� ∪ {�ϕ | �ϕ ∈ x}.
Claim 1 For any worlds x, y in the canonical model

R(x) ⊇ R(y) iff y ⊇ {�ϕ | �ϕ ∈ x}.

In fact, if y ⊇ {�ϕ | �ϕ ∈ x} and yRz, then by the definition of R, �ϕ ∈ x
implies ϕ ∈ z, i.e. xRz. The other way round, if y 6⊇ {�ϕ | �ϕ ∈ x}, then
for some �ϕ ∈ x we have �ϕ 6∈ y, and so there exists z ∈ R(y) such that
ϕ 6∈ z. But �ϕ ∈ x, hence z 6∈ R(x). Therefore R(y) 6⊆ R(x). Q.e.d.

Claim 2 xR→y iff y ⊇ x+.
In fact, by definition, xRy iff y ⊇ x�, and R(x) ⊇ R(y) iff y ⊇ {�ϕ | �ϕ ∈
x}, by Claim 1. Q.e.d.

Due to Lemma 10, F is weakly condensed, and thus by Claim 2, x+ is
an L-consistent set for any x ∈W .

For the proof of our theorem, consider an arbitrary world x in W . As-
suming that all formulas are arranged in some fixed order ϕ1, ϕ2, . . ., we
define the sequence y0, y1, . . . of L-consistent sets of formulas by induction:
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• y0 = x+

•

yn+1 =

{
yn ∪ {�ϕn} if this set is L− consistent,
yn otherwise

Let y′ = y0∪ y1 ∪ . . .. Note that y′ is L-consistent, and for all formulas ϕ, if
y′∪{�ϕ} is L-consistent, then �ϕ ∈ y′. By the Lindenbaum Lemma, there
exists a maximal L-consistent set y′′ such that y′ ⊆ y′′. Since y′′ ⊇ x+,
then by Claim 2, xR→y′′.

Claim 3 If y′′R→v then R(v) = R(y′′).
Given v ∈ R(y′′) and R(v) ⊆ R(y′′), let us show that R(y′′) ⊆ R(v). So

we assume t ∈ R(y′′) and show that vRt. For this we further assume �ϕ ∈ v
and show that ϕ ∈ t. Since v is a world in R(x) such that R(v) ⊆ R(x), we
have y′ ⊆ v. In fact, note that x� ⊆ v since xRv; all other formulas in y′

are of the form �ψ, and �ψ ∈ y′ ⊆ y′′ implies y′′ � �ψ, and thus v � �ψ
(since R(v) ⊆ R(y′′)), i.e. �ψ ∈ v.

Hence y′ ∪ {�ϕ} is an L-consistent set of formulas, and thus �ϕ ∈ y′

by our construction. Therefore �ϕ ∈ y′′. Since y′′Rt, we eventually obtain
ϕ ∈ t. Q.e.d.

Claim 4 card(R(y′′)) ≤ 1.
In fact, let z, t be worlds in R(y′′) such that z 6= t. Then there exists a

formula ϕ ∈ z such that ϕ 6∈ t. Thus

u = (y′′)+ ∪ {3ϕ→ �ϕ}

is an L-consistent set of formulas. For otherwise there exists formulas
ϕ1, . . . , ϕm+n such that �ϕ1, . . . ,�ϕm+n ∈ y′′ and

(1) ¬(ϕ1 ∧ . . . ∧ ϕm ∧�ϕm+1 ∧ . . . ∧�ϕm+n ∧ (3ϕ→ �ϕ)) ∈ L.

Let

ϕ′ = ϕ1 ∧ . . . ∧ ϕm, ϕ
′′ = ϕm+1 ∧ . . . ∧ ϕm+n.

So �ϕ′ ∧�ϕ′′ is in y′′.
On the other hand, by (1) and classical logic

¬(ϕ′ ∧�ϕ′′ ∧ (�¬ϕ ∨�ϕ)) ∈ L,

which is equivalent to

ϕ′ → ¬(�(ϕ′′ ∧ ϕ) ∨�(ϕ′′ ∧ ¬ϕ)) ∈ L.

Hence

�ϕ′ → �¬(�(ϕ′′ ∧ ϕ) ∨�(ϕ′′ ∧ ¬ϕ)) ∈ L,

which is equivalent to

(2) �ϕ′ → �(¬�(ϕ′′ ∧ ϕ) ∧ ¬�(ϕ′′ ∧ ¬ϕ)) ∈ L.
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But

(3) 3((ϕ′′ ∧ ϕ→ �(ϕ′′ ∧ ϕ)) ∧ (ϕ′′ ∧ ¬ϕ→ �(ϕ′′ ∧ ¬ϕ))) ∈ L

as a substitution instance of α2. Since �ϕ′ ∈ y′′, from (2) and (3) we obtain
for some w ∈ R(y′′):

¬(ϕ′′ ∧ ϕ) ∧ ¬(ϕ′′ ∧ ¬ϕ) ∈ w.

Then ¬ϕ′′ ∈ w, which contradicts �ϕ′′ ∈ y′′.
Therefore u is L-consistent. By the Lindenbaum Lemma, there exists a

maximal L-consistent set u′ ⊇ u. By the above construction and Claim
2, y′′R→u′, and also 3ϕ → �ϕ ∈ u′. So by Claim 3, R(u′) = R(y′′).
Therefore z, t are worlds in R(u′). Hence 3ϕ ∈ u′, and consequently �ϕ is
in u′. Thus ϕ is in t: a contradiction. Q.e.d.

Since F is weakly condensed, for some z we have y′′R→z, i.e., y′′Rz and
R(z) ⊆ R(y′′). By Claim 4, R(y′′) = {z}, thus R(z) ⊆ {z}. xR→y′′ and
y′′R→z implies xRz, since R→ is transitive and R→ ⊆ R. Thus F ∈ Cfwω .

�

COROLLARY 12. Lfw2 is strongly complete with respect to Cfwω .

COROLLARY 13. The McKinsey formula �3p→ 3�p is in Lfw2 .

Proof.2 In fact, Cfwω � �3p→ 3�p. �

PROPOSITION 14. Lfw2 = Lfw3 . . . = Lfwω .

Proof. Follows from Theorems 3 and 11.
However let us give a syntactic proof of this fact proposed by Max Cress-

well in a private communication.
It is sufficient to show that Lfwn ` αn+1 for n ≥ 2. Let

π1 := (p1 → �p1), π2 := (p2 → �p2) ∧ · · · ∧ (pn → �pn),
π3 := (pn+1 → �pn+1).

Now we argue in Lfwn :

(1) 3(π1 ∧ (¬q → �¬q)) α2, Subst
(2) 3(π1 ∧ (3q → q)) (1), equivalent

replacement
(3) 3(π1 ∧ (3(π2 ∧ π3)→ (π2 ∧ π3))) (2), Subst
(4) 3(π2 ∧ π3) αn, Subst
(5) �3(π2 ∧ π3) (4), Gen
(6) 3(p ∧ (q → r))→ (�q → 3(p ∧ r)) derivable in K
(7) 3(π1 ∧ π2 ∧ π3) (6), Subst,

(3),MP, (5),MP

Note that together with Theorem 3, this argument provides an alternative
proof of Theorem 11. �

2Note that there also exists a simple syntactic proof of this corollary.
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4.4 Elementarity

PROPOSITION 15. Let n ≥ 2. Then for any frame F , F ∈ Cfwn iff F �

Lfwn .

Proof. Let F = (W,R) be a frame such that F � Lfwn and let us show that
F ∈ Cfwn . Take an arbitrary world x in W and a cover {W1, . . . ,Wn} of
R(x). Let M = (F , V ) be a model based on F such that V (p1) = W1, . . .,
V (pn) = Wn. Since x � αn, there exists a world y in R(x) such that for all
i in {1, . . . , n}, M, y � pi → �pi. Then for any i in {1, . . . , n}, if y ∈ Wi,
then R(y) ⊆Wi.

Now suppose F = (W,R) is a frame such that F 6� Lfwn . Then there
exists a modelM = (F , V ) and a world x ∈ W such that for any y ∈ R(x),
there exists i in {1, . . . , n} such that M, y 6� pi → �pi. Let Wi = V (pi).
Then {W1, . . . ,Wn} is a cover of R(x) and for any y ∈ R(x) there exists i
in {1, . . . , n} such that y ∈ Wi, but R(y) 6⊆Wi. Hence F 6∈ Cfwn . �

COROLLARY 16. Cfwn = Cfw2 for any n ≥ 2.

Proof. By Propositions 14 and 15. �

By Theorems 3, 7, and Proposition 14, Lfw2 is quasi-elementary and finitely

elementary. The following theorem states the elementarity of Lfw2 .

THEOREM 17. For any frame F , F ∈ Cfwω iff F � Lfw2 ; thus α2 modally
defines Cfwω .

Proof. By Lemma 2, it is sufficient to show that Fr(Lfw2 ) ⊆ Cfwω .

So let F = (W,R) � Lfw2 . Then by Proposition 15 and Corollary 16,

F ∈ Cfw2 = Cfw3 . Hence we obtain

Claim 1 (W,R→) is in Cfw2 .
In fact, let x ∈W and let {W1,W2} be a cover of R→(x). Also let

V1 := W1 ∩ R
→(x), V2 := W2 ∩ R

→(x), V3 = R(x) \ (V1 ∪ V2).

So {V1, V2, V3} is a cover of R(x) and there exists a world y in R(x) such
that for all i in {1, 2, 3}, if y ∈ Vi, then R(y) ⊆ Vi ⊆ R(x). Therefore
y ∈ R→(x). Next, for i = 1, 2 we have: if y ∈ Wi, then y ∈ Vi, so

R→(y) ⊆ R(y) ⊆ Vi ⊆Wi. Hence (W,R→) is in Cfw2 . Q.e.d.
Claim 2 (W,R→) is in Cfwω .

In fact, �3p → 3�p is in Lfw2 (Corollary 13); then by Proposition 15
and Claim 1, (W,R→) � �3p → 3�p. Since R→ is transitive, (W,R→) is
in Cfwω . Q.e.d.

By Claim 2, for any world x there exists a world y in R→(x) such that
R→(y) ⊆ {y}. Let W1 = {y} and W2 = R(y) \ {y}. Then {W1,W2} is a
cover of R(y), and so there exists a world z ∈ R(y) such that for all i in
{1, 2}, if z ∈ Wi, then R(z) ⊆Wi.
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Suppose z ∈ W2. Then R(z) ∪ {z} ⊆ R(y). So yR→z and z 6= y.
Consequently R→(y) 6⊆ {y}: a contradiction.

Hence z ∈ W1, i.e. z = y, and so R(z) ⊆ {y}. Since y ∈ R→(x) ⊆ R(x),
y is a final world in R(x). �

4.5 Fmp and decidability

THEOREM 18. Lfw2 has the fmp and therefore is decidable.

Proof. Given an Lfw2 -consistent formula ϕ, let us show that ϕ is satisfiable
in some finite frame from Cfwω .

LetM = (W,R, V ) be the canonical model for Lfw2 . ThenM, x0 � ϕ for
some x0 ∈ W and (W,R) ∈ Cfwω by Theorem 11. Let W f be the set of all
final worlds in M. Take a new proposition letter q 6∈ cl(ϕ), and let U be
a valuation such that for all p ∈ cl(ϕ), U(p) = V (p), and U(q) = W f . For
N := (W,R,U) we obviously have N , x0 � φ.

Let N ′ = (W ′, R′, U ′) be the minimal filtration of N through Ψ = cl(ϕ)∪
{q}. Recall that W ′ is the quotient set under the equivalence relation

x ∼ y iff the same formulas from Ψ are true at N , x and N , y,

and for y, z ∈ W ′

yR′z iff (y1Rz1 for some y1 ∈ y, z1 ∈ z),

where x denotes the class of x modulo ∼. So N ′ is finite, and N ′, x0 � ϕ,
by the Filtration Lemma.

Let us show that (W ′, R′) ∈ Cfwω . Consider x ∈ W ′. Since (W,R) ∈ Cfwω ,
there exists y ∈ W f ∩ R(x). Then xR′y. Suppose yR′z, so y1Rz1 for some
y1 ∈ y, z1 ∈ z. Since y ∈ W f we have N , y � q, so N , y1 � q and y1 ∈ W f .
Hence y1Rz1 implies z1 = y1, thus z = y. It follows that R′(y) = {y}, thus
(W ′, R′) ∈ Cfwω . �

5 Every world can see a deterministic world

In our second example, we put ϕ := 3p1 → �p1. Let

βn := ϕn
3

= 3((3p1 → �p1) ∧ . . . ∧ (3pn → �pn));
Ldwω := L3(ϕ) = K + {β0, β1, . . .} (= KM∞);
Ldwn := Ln

3
(ϕ) = K + βn,

for n ≥ 0.
Note that Ldw0 is nothing but K + 3>, and Ldw1 = K + �3p→ 3�p.
The class Cdwω := C3(ϕ) is the class of all frames F = (W,R) with the

following property:

• for all worlds x in W , there exists a world y in R(x) such that
card(R(y)) = 1, i.e., every world in W can see a deterministic world
in F .
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Let us also consider for n ≥ 1, the class Cdwn of all frames F = (W,R)
such that

• for all worlds x in W and for all sets W1, . . . ,Wn ⊆W , there exists a
world y in R(x) such that for all i in {1, . . . , n}, if R(y)∩Wi 6= ∅ then
R(y) ⊆Wi.

Let Cdw0 be the class of all serial frames. One can easily see that

PROPOSITION 19. Cdw0 ⊇ Cdw1 ⊇ Cdw2 . . . ⊇ Cdwω .

PROPOSITION 20. Let n ≥ 1. Then Cdwn = Fr(Ldwn ).

Proof. Given a frame F = (W,R) ∈ Cdwn , let us show that for any model
M = (F , V ), for any x ∈W we haveM, x � βn. Put Wi := V (pi). Then for
some y ∈ R(x) we have: for all i in {1, . . . , n}, R(y)∩Wi = ∅ or R(y) ⊆Wi.
If M, y � 3pi then R(y) ∩Wi 6= ∅, so R(y) ⊆Wi, thus M, y � �pi. Hence
M, x � βn.

For the converse, suppose F � Ldwn and show that F ∈ Cdwn . Let x ∈ W ,
W1, . . . ,Wn ⊆ W . Consider a model M = (F , V ) such that V (pi) = Wi,
1 ≤ i ≤ n. SinceM, x � βn, for some y ∈ R(x) for all i ∈ {1, . . . n} we have:
M, y � 3pi → �pi, so R(y) ∩Wi 6= ∅ implies R(y) ⊆ Wi. Thus F ∈ Cdwn .

�

From [7] it follows that Ldwω is not finitely-axiomatizable (this proof is
based on constructions from [5], [6]).

It is well known that Ldw1 is not ∆-elementary; this was proved indepen-
dently in [1] and [5]; a proof can also be found in [3]. Next, [7] proves that
Ldwω is not ∆-elementary (and thus certainly Cdwω 6= Fr(Ldwω )). Let us now
prove the following generalization of this fact:

THEOREM 21. If L is a modal logic, Ldw1 ⊆ L ⊆ Ldwω , then L is not
∆-elementary.

Proof. The main idea is the same as in [1]. First, for any Kripke model
M and n ≥ 1 we define the relation

z1 ≡
M
n z2 := M, z1 � pi ⇔M, z2 � pi for all i ∈ {1 . . . n}.

Clearly, ≡M
n is an equivalence relation onM, and the quotient set W/ ≡M

n

is finite. By a straightforward argument,

M, y � (3p1 → �p1)∧ . . .∧(3pn → �pn) iff z1 ≡
M
n z2 for all z1, z2 ∈ R(y)

Now let us define a certain frame F = (W,R). For a countable set
Z = {zi | i ∈ N}, take the uncountable set

Y := {yU | U ⊆ Z, U is infinite},

and put W := Z ∪ Y ∪ {x}, where x 6∈ Z ∪ Y . R is defined as follows (Fig.
1):

R(x) := Y, R(yU ) := U, R(zi) := {zi}.
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Figure 1.

Claim 1 F � Ldwω .
It is sufficient to show that for all n ≥ 0 and for all models M based on

F ,M, x � βn. Since W/ ≡M
n is finite, there exists an ≡M

n -equivalence class
U0 such that U := U0 ∩ Z is infinite. Then

M, yU � (3p1 → �p1) ∧ . . . ∧ (3pn → �pn)

and therefore M, x � βn. Q.e.d.
Now suppose the class Fr(L) is ∆-elementary, i.e., definable by a first-

order theory T in the language {R, =}. Since F � Ldwω , we have F � L,
thus F � T . By the Löwenheim-Skolem theorem, there exists a countable
subframe F ′ = (W ′, R′) of F such that W ′ ⊇ Z ∪ {x} and F ′ � T . Then
F ′ � L, and thus F ′ � β1

However by [6, Theorem 1], ¬β1 is satisfiable at a point x in a frame
(W,R) if for all y in R(x), R(y) is infinite and card(R(y)) ≥ card(R(x)).
Thus F ′, x 6� β1.

This contradiction proves the theorem. �

COROLLARY 22. Cdwω is not modally definable.

Proof. In fact, if an elementary class of frames C is modally definable, then
its modal logic L(C) is elementary — just because Fr(L(C)) is the smallest
modally definable class containing C. �

For v = {v1, . . . , vn} ∈ {0, 1}n, put pv :=
∧

1≤i≤n

pvi

i , where p1 := p, p0 :=

¬p. It is not difficult to check that for all n > 0, βn is equivalent to∨
v∈{0,1}n

3�pv. Thus the logics Ldw1 , Ldw2 , . . . , Ldwω are uniform. Since all

serial uniform logics have the fmp (see e.g. [4]), we have the following

THEOREM 23. The logics Ldw1 , Ldw2 , . . . , Ldwω have the fmp.

COROLLARY 24. The logics Ldw1 , Ldw2 , . . . , Ldwω are decidable.
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Proof. For finite n Ldwn is finitely axiomatizable. The decidability of Ldwω
follows by Theorem 23 and Proposition 8. �

6 Complexity

It is well-known that all logics between K and S4 are PSPACE-hard [12].
This result can be easily extended to all logics between K and S4+�3p→
3�p (see e.g. [15]). Thus Lfw2 , Ldwω are PSPACE-hard. PSPACE-decidability

of the logics Lfw2 , Ldwω was recently obtained by the first author, the proof
will be published in the sequel.

7 Conclusion

Stepping aside from a familiar field leads us to various nontrivial questions.
We hope to address some of them in the second part of this paper. Let us
only mention several topics for further study.

1. We see that L3(ϕ) (for a Sahlqvist formula ϕ) is sometimes finitely
axiomatizable. Does there exist a reasonable criterion (or at least a sufficient
condition) for that?

2. Basing on his investigation in first-order modal logic, Sergei Astretsov
(Moscow State University) proposed the following conjecture: L3(ϕ) is
finitely axiomatizable iff it is elementary. This conjecture is consistent with
the three examples from the present paper.

3. Does the fmp always transfer from K + ϕ to L3(ϕ)?
4. What are the properties of L3(ϕ) for well-known formulas ϕ, such

as transitivity, non-branching, symmetry? As for transitivity, there is some
progress: recently Stanislav Kikot (Moscow State University) has proved
that C3(�p → �2p) is not modally definable. This leads to another ques-
tion: does the elementarity of L3(ϕ) imply the modal definability of C3(ϕ)?
Note that the converse is rather trivial, see the proof of Corollary 22.

5. The logics L3(ϕ) are not ∆-elementary for ϕ = �p → p, p → �p.
What happens to other non-elementary logics L3(ϕ) from Theorem 3? Note
that according to a result by Van Benthem [2], every finitely axiomatizable
∆-elementary modal logic is elementary.

6. Note that Theorem 21 on non-elementarity of “approximants” Ln
3

(ϕ)
holds for KM∞, but its analogue fails for Hughes’ logic L3(�p→ p), since
L1

3
(�p → p) = K + ��p → 3p is axiomatized by a Sahlqvist formula.

What happens in the general case – is it true that if L3(ϕ) (for a Sahlqvist
ϕ) is non-elementary, then Ln

3
(ϕ) are also non-elementary for sufficiently

large n?
7. Is it true that all the logics Ln

3
(ϕ) are complete (again for a Sahlqvist

ϕ)? We do not know this even for simple cases, like n = 2, ϕ = p→ �p.
8. Is it possible to extend the result on non-canonicity of approximants

for L3(ϕ) by Goldblatt–Hodkinson [7] to a larger class of logics L3(ϕ)?
What about noncompactness (for the McKinsey axiom this was established
in [16])?

9. What happens in the transitive case? More exactly, consider logics of
the form K4+L3(ϕ) for locally elementary and locally d-persistent ϕ. Our
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results show that they are quasi-elementary. Are they elementary? finitely
axiomatizable? Note that e.g. K4 + L3(p → �p) = K4 + �3p→ 3�p is
elementary.

10. Theorem 3 can probably be extended to a larger class of logics. Of
course, it survives in the polymodal case. Moreover, instead of the prefix 3

one can take a prefix 3k1 . . .3kn
, with the corresponding condition “every

world sees a ϕ-world via the composed relation Rk1 ◦ · · · ◦ Rkn
”. And

furthermore, we can consider more complicated conditions, like “every world
sees a world seeing a ϕ-world and a ψ-world”. It would be interesting to
find a natural general result of this kind.
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