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Contemporary modal logic: between mathematics
and computer science

Ilya Shapirovsky · Valentin Shehtman

Abstract Modal logic appeared in ancient times as a form of reasoning about
necessity and possibility. Contemporary modal logic became one of the tools
for solving problems in computer science — both in theory and applications.
This was a rather unexpected transition from study of abstract philosophical
categories to an actual and practically significant field of modern science. It
was prepared by the previous period when modal logic (as well as other parts of
logic) extensively developed mathematical methods — algebraic, topological,
model-theoretic.

In this article we briefly explain some basic mathematical notions and ideas
from modal logic without getting into complicated technical details.

1 Introduction

Logic is usually understood as a certain scientific discipline, a traditional part
of philosophy. However, specialists also use the term ‘logic’ in a narrow sense,
as a name of a specific mathematical object. So there exist many particu-
lar logics — for example, Classical First-order Logic, Propositional Dynamic
Logic (PDL), Girard’s Linear Logic, etc. They all can be defined in precise
mathematical terms.

Logic in a broad sense is an area of human activity; so it is subject to perma-
nent development and crucial changes. Therefore it cannot be defined exactly.
In ancient times logic was aimed to explain how to reason and argue correctly,
in the Middle Ages logical reasoning was included in theological arguments,
after Renaissance — in the philosophy of science. Mathematical Logic in the
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early twentieth century was almost identical to Foundations of Mathematics
(‘Metamathematics’, in Hilbert’s terminology). Nowadays metamathematics
is regarded as an important, but not the only part of mathematical logic.

It is difficult to define the subject of mathematical logic also because of
variety of smaller fields, with different tasks, methods and styles. So instead
of searching for a plausible definition, we just indicate the main components
of this area.

At some point the major mathematical results in the field of logic were
collected in Handbook in Mathematical Logic [Bar77]. The table of contents
of these volumes can give impression of the state of our discipline at that time.
The volumes are entitled “Model theory”, “Set theory”, “Recursion theory”,
“Proof theory and constructive mathematics”.

These directions are still existing and developing; at the same time, the
past forty years witnessed the incredible computer revolution, and the growth
of theoretical computer science. So recursion theory became just a part of
this huge area. Proof theory (as well as constructive mathematics) is now
also influenced by the computer science paradigm. Partly by the same reason
study of different nonclassical logics has moved from periphery to the centre
of mathematical logic. Note that among the great variety of nonclassical logics
only some constructive logics and theories (especially, intuitionistic) and the
basic modal logic of provability were chosen for Barwise’s Handbook.

Typical problems investigated by mathematical logicians are: consistency
of axiomatic theories; algorithmic decision problem for different deductive sys-
tems; semantic completeness of axiomatic theories in different semantics; defin-
ability of properties of mathematical structures in different languages; special
syntactic properties of theories — such as interpolation property or disjunc-
tion property. In many cases these investigations involve methods from various
“non-logical” fields of modern mathematics.

Logics in the narrow sense are formal mathematical objects (certain sets
or structures), and they can be precisely defined. So Mathematical Logic as
science studies logics as objects. A similar double terminology occurs in other
areas of mathematics — for example, Algebra studies algebras, Geometry stud-
ies geometries, Topology studies topologies etc. Modal Logic is not exceptional
— it studies modal logics.

In this paper we give a brief introduction to modal logic. We begin with
general problematics of mathematical logic (section 2), then formulate main
definitions and some results from theory of modal logics (sections 3, 4); this
material is illustrated by a certain example — the modal logic of inequality
(section 5).

2 Some basic notions

Primary notions of logic are ‘word’ (logos) and ‘sentence’ (sententia—meaning
in Latin not only a particular syntactic construction, but a specific argument).
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At all times logic dealt with words (or texts) written in certain languages.
Thus logic is closely connected to other disciplines studying words and lan-
guages (such as linguistics or combinatorial group theory). However, logicians
are interested both in words and their meanings, so the languages studied in
logic usually have syntactic and semantical components, just as any natural
language.

In mathematical logic this dualism manifests itself in cooperation between
two areas: proof theory and model theory. Every working logician deals with
both of them — proofs justify our models, while models verify our proofs.
Here one can find an analogy to correlation between theories and experiments
in physics and other natural sciences. However, models in pure mathematical
logic are still abstract and theoretical, while applied logic can use models
simulating reality in the same way as in applied mathematics or physics.

2.1 Syntax of formal languages and calculi

In the historical perspective of the last two centuries the development of math-
ematical logic was rapid, and the changes involved formal logical syntax as well.
The original idea of presenting formal logic as the Boolean logic of proposi-
tions transformed into rather ambitious projects of axiomatizing the whole
mathematics on the base of classical first-order logic, Hilbert’s formalism and
Bourbakism. These programs were not realized after all, but they empha-
sized an important role of classical first-order language as a candidate for the
universal language of science.1 (The Leibnitzean dream of creating such a lan-
guage still exists.) Modern logic deals with a great variety of special formal
languages. They include abstract languages — propositional, first-order, high-
order, infinitary. Their further specifications are languages for applied logic,
such as programming languages, query languages for databases etc. Diversity
of logical languages generates multiple options for their expressive strength.

Logical syntax usually includes two levels. The first level describes correct
language expressions (especially, propositions), and the second level describes
correct proofs allowing us to deduce new propositions (theorems) from a fixed
set of postulates (axioms). Both descriptions can be done in the same formal
style.

A formal definition of syntax begins with a choice of an alphabet— a certain
set of symbols (or letters); sequences of letters are called words.2 Some of the
words are declared well-formed expressions, and they constitute what is called
a formal language. In their turn, some expressions represent propositions; they
are called formulas. Also there may be formal expressions for other objects of
discourse, such as ‘sets’, ‘numbers’, ‘programs’, ‘agents’, ‘states’ etc.

1 Let us also mention a recent project by V. Voevodsky “The Univalent Foundations
Program” proposing to replace the first-order predicate logic with intuitionistic type theory
[The13].

2 Words are usually finite, but mathematical logicians also consider infinitary languages
allowing for infinite words.
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A formal language is usually described as a system of rules (a calculus)
generating complex expressions from simpler ones. For example, this system
can be presented as a context-free formal grammar (or in Backus normal form).
A procedure generating a certain expression is a derivation in this formal
grammar.

Logical calculi are at the second level of logical syntax. Such a calculus
consists of a set of formulas called axioms and a set of inference rules. A
formal proof (or derivation) is then arranged as a process generating new
formulas (theorems); every new theorem is obtained by applying inference
rules to axioms and/or earlier theorems. This is exactly the same as a correct
argument in traditional logic — a sequence of sentences obtained from basic
facts by using rules.3.

An important feature of a logical calculus is efficiency. This means ability
(or more exactly, existence of an algorithm) for checking proof correctness.
Efficiency puts restrictions on sets of axioms and rules and on definitions
of formulas, because it is desirable that formulas and their finite sequences
(proofs) could be inputs of programs for proof checking.

A well-known standard example is classical predicate logic [Kle02]. Here the
first level of syntax contains two types of well-formed expressions — terms and
formulas. Complex expressions are constructed from atomic ones by recursion.

Atomic terms are individual constants and variables, and complex terms
are built from them by applying function symbols (so for example, if x, y are
variables, 1 is a constant and +,× are function symbols for addition and
multiplication, then (x+ 1)× y is a complex term).

Atomic formulas are constructed from terms and predicate symbols; for
example, (x+ 1)× y < x+ x is an atomic formula (if < is a predicate symbol
and x, y, 1,+,× are the same as above). Complex formulas are obtained by
applying logical connectives and quantifiers to atomic formulas. For example,
∀x∃y ((x+ 1)× y < (x+ x) + 1) is a formula.

At the second level there is an axiomatic system of predicate logic. It can
be presented in different equivalent versions — Hilbert-type systems, sequent
systems, natural deduction systems. The reasons for this diversity are both
theoretical and practical — sequent systems are convenient for proof analysis,
Hilbert systems have simpler formulations, while natural deduction is better
for correlation with the usual mathematical proofs.

Finally we remark that syntactic study of logical languages can be arranged
within the general context of mathematical linguistics. However, there is a
difference between logic and linguistics in the goal of this analysis. Logicians
are interested mainly in what can be expressed in a certain language, while
linguists answer the question: how a certain language expresses things?4

3 Aristotelean syllogistic is a less formal example of a logical calculus; however, it can be
presented in a formal way as well [ Luk57].

4 Of course there is no clear border here. Let us illustrate this by an example. Typical
results in mathematical linguistics are the theorems by Gaifman [BHGS60] and Pentus
[Pen95]: a language is generated by a context-free grammar if and only if it is generated by
a Lambek grammar. From the viewpoint of linguistics, this shows that description of natural
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2.2 Semantics of formal languages and calculi

Semantical analysis appears in several sciences (semiotics, logic, linguistics,
computer science, psychology) in different versions. From the general semiotic
viewpoint semantics associates meanings with language expressions. However,
in logical semantics we need not only to understand what a certain proposition
means, but also to know if it is true or not. So propositions should be associated
with truth values.

Generally speaking, in mathematical logic, to define a semantics means to
define the notion of a model. However, the term ‘model’ is used in different
senses: we distinguish models of languages, models of formulas, and models of
theories.5

To construct a semantics for a logical language L we associate L with a
certain class of mathematical structures, the models of L. Well-formed ex-
pressions of L are then interpreted in these models. In particular, we regard
formulas of L as propositions (statements) about models of L. Of course, the
truth value of a formula depends on the chosen model. For example, the first-
order formula ∀x∃y (y < x) is true on the set of integers with the standard
ordering, but false on the set of positive integers.

More exactly, for any model M of L and for any formula φ in L we should
formally define when φ is true in M . Usually such a definition is given by
induction on the length of φ.

A model of a formula φ in a language L is a model of L, where φ becomes
true.

In the same way we can talk about models of axiomatic calculi (axiomatic
calculi are often called axiomatic theories). Namely, M is called a model of a
theory C if all theorems of C are true in M .

Study of theories and models goes in two directions.

On the one hand, we can be interested in models of particular theories,
such as models of Peano Arithmetic, models of the theory of groups (i.e.,
groups) etc. In general, mathematicians often define specific classes of struc-
tures by axiomatizing their properties — the well-known examples are the
axioms of topological spaces or Kolmogorov’s axioms of probability theory.
These definitions can also be arranged as formal theories and studied by log-
ical methods. Axiomatic definitions are common in mathematics of the last
century; in particular, they are systematically used in Bourbaki’s treatise “El-
ements of Mathematics”. However, the logical analysis of the corresponding
theories has not yet been done systematically.

language syntax using generating grammars in Chomsky style is equivalent to description
through grammar categories in Ajdukiewicz style. But from the viewpoint of mathematical
logic, these results show that two certain types of axiomatic calculi are equivalent (i.e., they
can prove the same theorems).

5 Formal semantics developed in mathematical logic essentially influenced other disci-
plines, linguistics and computer science. E.g. language analysis by Montague grammars or
semantic web approach to data analysis include truth values and models.
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On the other hand, given a model M of a language L, one can consider
the set T (M) of all formulas of L that are true in M .6 T (M) is called the
theory of M (in this language). Different languages can be used for the same
structure producing a variety of theories. Theories of this kind are intensively
studied by mathematical logicians.

2.3 Soundness and completeness

Correlation between syntax and semantics of a logical calculus manifests itself
in properties of soundness and completeness.

If the formulas chosen as axioms for our calculus C are true in a structure
M and the truth inM is preserved by the inference rules of C, then C is called
sound with respect to M . Obviously, in this case all the theorems of C become
true in M , so M is the model of C. Thus we have [C] ⊆ T (M), where [C]
denotes the set of theorems of C.

A stronger property is completeness: a calculus L is called complete with
respect to a model M if the set of its theorems coincides with T (M): [C] =
T (M).7

Completeness is one of the crucial properties in mathematical logic, but it
may be quite difficult to achieve it. The famous Gödel Incompleteness Theorem
implies that Peano Arithmetic (PA) is incomplete w.r.t to its standard model,
the set of natural numbers N. Moreover, there is no hope to make it complete
by adding finitely many missing axioms, because in principle the first-order
theory T (N) cannot be efficiently axiomatized.8 This obstacle appears for
many other theories, where PA can be interpreted.

However, in the 20th century complete first-order theories were thoroughly
investigated by model theorists. In many cases they were successfully axioma-
tized. Typical examples (both found by Tarski) are the first-order theory of the
field of the reals T (R) and the first-order precise axiomatization of Euclidean
geometry of the real plane.

Completeness is a very desirable property, and let us mention one of its
applications. If a calculus C is complete w.r.t M , we can forget about M and
study only theorems of C. Also, C can be complete of w.r.t. another, perhaps
a simpler model M ′. In this case we can replace M by M ′; in fact,

T (M) = [C] = T (M ′),

i.e., M and M ′ verify the same sentences. Then the models M and M ′ are
called equivalent (in the language L); elementary equivalent if L is a first-
order language. If we are interested in specific properties of M rather than
proofs in C, we can construct an appropriateM ′ and forget C after that. Such

6 For technical reasons, in the case of first-order languages T (M) is usually defined as the
set of sentences — formulas without free variables.

7 Some authors call C complete if T (M) ⊆ [C]. In this terminology the equality [C] =
T (M) means that L is both sound and complete.

8 This notion will be discussed later on.
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an approach was used by A. Robinson in his nonstandard analysis: to prove
theorems from the real analysis, i.e., properties of the field of the reals R,
one can construct an elementary equivalent model, the field of hyperreals ∗R
(containing infinitesimals) and prove the required properties for this model.
Cf. [Gol12] for the details.

2.4 Enumerability, decidability, computational complexity

Yet at the beginning of the last century mathematicians had a hope that all
precisely formulated mathematical problems could be solved efficiently. How-
ever, this hope was destroyed afterwards; now we know plenty of undecidable
algorithmic problems in different parts of mathematics.

Every algorithmic problem can be put as a computational task for a func-
tion transforming words into words (maybe, in another language). In partic-
ular, it may be a decision problem: to determine whether a given word in a
language X belongs to its certain sublanguage Y ; more exactly, this is a deci-
sion problem for Y w.r.t. X. Usually in this case the larger language X has an
explicit description, i.e., the decision problem for X w.r.t. the set of all words
(in the given alphabet) can be solved. To solve a decision problem means to
construct an algorithm, which for every input a from X gives an answer ‘yes’
if a ∈ Y and ‘no’ otherwise. If such an algorithm exists, the set Y is called
decidable.

A related computational task is generation of a set Y . This means con-
structing an algorithm that produces elements of Y one by one (perhaps, with
repetitions).9 If such an algorithm exists, the language Y is called (computably)
enumerable.10

Again, a larger set X is usually enumerable by a standard procedure. Then
we have

Fact 1 If Y is decidable in X, then Y is enumerable.

Indeed, to generate a nonempty Y just subsequently generate the words of
X and for each of them decide whether they are in Y .

Commonly used logical languages are generated by inductive definitions
equivalent to context-free grammars. This always gives us a computable enu-
meration, together with a decision procedure — by standard methods from
mathematical linguistics. So the first level of logical syntax is rather simple
from the computational viewpoint.

But situation at the second level of syntax is far from nice. In fact, even
if we give a very good algorithmic definition of a logical calculus and use an
exact notion of proof, finding particular proofs can make a serious problem.

Let us formulate this in more precise terms. First note the following

9 More exactly, given an input number n, this algorithm should produce the n-th element
in an enumeration of Y .
10 The empty set is also enumerable, by definition.
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Fact 2 If C is an axiomatic theory with a decidable set of axioms and a
decidable set of rules, then

(1) the set of proofs in C is decidable,
(2) the set [C] of theorems of C is enumerable.

Remarks on the proof. (1) In fact, given a sequence of formulas, for every
its member one can successively check if it is an axiom or if it is obtained
from earlier formulas by one of the rules. So in principle every argument in
a precisely formulated theory can be checked automatically — in this respect
the dreams of philosophers and logicians of past times are realizable.

(2) Enumeration of the set [C] can be constructed as follows. Decidability of
the set of proofs implies its enumerability (fact 1). So we can start a procedure
generating proofs and subsequently extracting formulas occurring in them —
actually, for every proof we can take just its last formula.

In a more general setting, a set of words Y is called efficiently axiomatizable
if it coincides with the set of theorems of some calculus with a decidable set
of axioms and inference rules. So by the above argument we have

Fact 3 Every efficiently axiomatizable set of words is enumerable.

Moreover, in many cases for logical calculi efficient axiomatizability and
enumerability are equivalent (Craig’s theorem). For example, this is true for
first-order theories and modal logics considered below; however, sometimes
this equivalence does not hold [KLR17].

Next, a logical calculus is called decidable if the set of its theorems is
decidable. So for a decidable calculus C there must be a decision procedure —
an algorithm solving the decision problem. For every input formula φ, it gives
the answer ‘yes’ if φ is a theorem of C and ‘no’ otherwise. From the practical
side, we may ask for more: if the answer is ‘yes’, it is desirable to get a proof
of φ. If C is decidable, this is also possible: start a computable enumeration
of all proofs and check if φ occurs in them. Given that φ is a theorem, this
procedure will stop at some stage. Of course, such an algorithm is far from
optimal; in practice there exist faster methods of automated proof search.

By fact 1, every decidable calculus is enumerable. The converse is not true:

Fact 4 There exist enumerable, but undecidable calculi.
The question about decidability of a certain calculus may be very nontriv-

ial. After the first undecidability results were obtained in the 1930s (by A.
Church — for Peano Arithmetic and Classical predicate calculus), investiga-
tion of decidability has become a large area of mathematical logic; an overview
can be found in [Bar77], v.3.

Undecidability phenomena lead us to a general problem: what kind of for-
mal theories should be developed? On the one hand, we would like to have a
language formalizing various properties of mathematical structures and prove
theorems in this language. On the other hand, if we make our formal theories
too powerful, they become undecidable. In many cases, classical first-order
theories of particular structures T (M) are undecidable (for example, if M is
the ring of integers Z or the field of rationals Q, cf. [TMRR10]). It is easy to
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see that if T (M) is undecidable, then it is also non-enumerable, so there is no
hope to axiomatize it efficiently in these cases.

Another important aspect is the computational cost for decidable theories:
how much of resources (time or memory) can decision procedures take? These
questions are studied by computational complexity theory, also a large area
of logic and computer science. This area was intensively developing in recent
decades, but many fundamental problems remain open here. The most famous
of them is the problem of equality of complexity classes P and NP.

Therefore, in mathematical logic we have to compromise between the ex-
pressive power and algorithmic properties of formal theories. Full harmony is
impossible; a partial compromise is sometimes achieved in modal logics.

3 Modal logic

Evolution of this area between philosophy, mathematics, and computer science
is described in a large paper by Goldblatt [Gol03] in many details. Let us briefly
point out some stages of this development.

Modal logic as a rather modest part of logic emerged in ancient times within
philosophy. Many famous philosophers contributed in modal logic studies, be-
ginning from Aristotle (for example, Ockham, Buridan, Leibnitz, Kant, Peirce,
and others). Only in the 20th century modal logic acquired its main technical
toolkit and became a separate discipline within mathematical logic. Finally,
its broad practical applications were found at the end of the last century, thus
bringing modal logic to computer science. So modal logic first supposed for
analysis of philosophical categories (especially, necessity and possibility), af-
ter a period of mathematical formalization, became an instrument for solving
specific practical problems.

3.1 From modal syntax to semantics

Probably, the first definition of modal logics as axiomatic calculi (in which
a logic is presented as a set of theorems of a certain calculi) was given by a
well-known American philosopher Clarence Lewis [LL32].

Some attempts of formalizing modalities were made earlier ([Mac06],
[Lew18]), but these works were about the choice of notation and its infor-
mal understanding, without any exact definitions of calculi or semantics. The
history of this period is discussed in [Gol03].

The most famous calculi introduced by Lewis (S4 and S5) will be discussed
later on. First, let us define the language of propositional modal logic.

Similarly to classical (Boolean) formulas, modal formulas are constructed
from a countable set of propositional variables PV by applying propositional
connectives (with parentheses). There are usual binary connectives ∨ (disjunc-
tion), ∧ (conjunction), → (implication), the unary connective ¬ (negation).
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We also have propositional constants (or 0-ary connectives) ⊥ (falsity) and
⊤ (truth). There are additional unary modal connectives 3 (diamond) and □
(box); their traditional reading is ‘possibly’ and ‘necessary’.

Beginning from Lewis’s work, numerous calculi axiomatizing “modal laws”
were constructed. The first interpretation of “necessity” and “possibility” was
intuitive. But intuition does not help in choosing true logical laws for these
notions.

For example, it is not clear if the implication 33φ → 3φ is true. I.e., is
some fact φ possible given that it is possible that φ is possible? Perhaps, the
answer depends on our understanding of “possibility”. In particular, 33φ→
3φ should be true if 3φ is understood as “φ may happen in the future”;
but this implication should be false if 3φ is understood as “φ may happen
tomorrow”.

So we cannot exactly identify true logical properties of modalities before
we formalize an intuitive notion of truth. There are two ways to obtain partial
solutions for this problem.

On the one hand, we can postulate a small number of intuitively true laws
as axioms of a certain calculus; then theorems of this calculus also become
“true”. This option was chosen by Lewis and other his contemporaries.

On the other hand, we can define models of our language (i.e., describe
semantics) and find out if a given proposition is valid, i.e. true in every model.
If it is not always true, we can find out, in which models it is true. At the
same time the adequacy of our formal definition of semantics remains an open
question.

By the 1950s several modal semantics were introduced (in different styles,
formal or informal). The most famous of them is relational Kripke semantics
giving an intuitively clear and mathematically precise interpretation of modal
language.

3.2 Kripke semantics

Definition 1 A Kripke frame, or just a frame, is a pair F = (W,R), where
W is a non-empty set, R is a binary relation on W . A valuation over a frame
F is a map V : PV −→ P(W ) (where P(W ) is the set of all subsets of W ),
i.e., V (p) ⊆ W for any variable p ∈ PV ; the pair M = (F, V ) is then called a
Kripke model over F . The set W is called the domain of F (and M), R is the
accessibility relation in F (and M).

The elements of the domain W are traditionally called possible worlds (the
notion introduced by Leibnitz), but in modern works they are also called
‘points’, ‘states’, ‘moments of time’ (if temporal modalities are discussed).
The main feature distinguishing Kripke semantics from Boolean semantics of
classical formulas is that truth values of formulas in a Kripke model depend
not only on this model, but also on possible worlds. A formula true at one
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world may become false at another world — this is quite natural in everyday
logic.

The truth of a modal formula in points of a Kripke model M = (F, V )
is formally defined by induction on the length of the formula (the notation
M,w ⊨ φ reads as “formula φ is true at point w of model M”):

M,w ⊨ p := w ∈ V (p);

M,w ⊨ ¬φ := M,w ̸⊨ φ;
M,w ⊨ φ ∨ ψ := M,w ⊨ φ or M,w ⊨ ψ;

M,w ⊨ φ ∧ ψ := M,w ⊨ φ and M,w ⊨ ψ;

M,w ⊨ φ→ ψ := M,w ̸⊨ φ or M,w ⊨ ψ;

M,w ⊨ ⊥ := false;

M,w ⊨ ⊤ := true;

M,w ⊨ 3φ := there exists v such that wRv and M, v ⊨ φ;

M,w ⊨ □φ := M, v ⊨ φ for all v such that wRv.

(the sign ‘:=’ is an abbreviation for ≪means by definition that≫).

The meaning of this definition is the following. Boolean connectives at
every point behave as in classical logic, and necessity is understood as truth
in every accessible point. Kripke refers this viewpoint to Leibnitz who had a
similar semantics for necessity (without further formal specification), but with
the universal accessibility relation. Thus in Leibnitz’s approach every point is
accessible from every point; necessity means truth in all worlds, and possibility
means truth in some worlds (see later, section 5.4).

Diodorus Cronus (the beginning of the 3rd century B.C.) could be regarded
as another ancestor of Kripke. In his Master Argument he used a temporal
interpretation of modalities: something is possible if either it is happening now,
or will happen at some future time; respectively, something is necessary if it is
happening now and will happen always in the future. In Kripke semantics this
understanding of modalities corresponds to the case when points are moments
of time and the accessibility relation is (non-strict) precedence in time.

Note that a priori we do not put any special restrictions on R. From the
mathematical viewpoint, the nature of points of a model does not matter
either. We can regard them as “possible worlds” (as in Kripke’s approach)
or as “moments of time” (as in works in temporal logics) or as “states of a
computing system” (as in works on dynamic logics).

The meaningful interpretation of “propositions” p is not involved in this
consideration; we are interested only in the value V (p), and we do not care
about the meaning of p itself.

A formula φ is said to be valid on a frame (W,R) if it is true at any point
under any valuation; this is denoted by (W,R) ⊨ φ.

Now note that the truth definition allows us to extend the function V to
all formulas by putting V (φ) := {w | M,w ⊨ φ}. In fact, instead of defining
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truth at points, we can define the values V (φ) by induction:

V (¬φ) := −V (φ);

V (φ ∨ ψ) := V (φ) ∪ V (ψ);

V (φ ∧ ψ) := V (φ) ∩ V (ψ);

V (φ→ ψ) := −V (φ) ∪ V (ψ);

V (⊥) := ∅;
V (⊤) := W ;

V (3φ) := R−1(V (φ));

V (□φ) := −R−1(−V (φ)).

Here ∪, ∩, − are the set-theoretic operations of union, intersection, and
complement (to W ), R−1(X) is the inverse image of X under R:

R−1(X) = {u | ∃w ∈ X uRw}.

As the definition of V (φ) is inductive, the values of the function V can
be chosen from not the whole P(W ), but a smaller family V of subsets of W .
However, to make such a restricted definition sound, we need the following
conditions on V :

• X ∈ V ⇒ −X ∈ V,
• X,Y ∈ V ⇒ (X ∪ Y ) ∈ V,
• X ∈ V ⇒ R−1(X) ∈ V.

Thus, the operations of union and complement should preserve membership
in V. Of course, then intersections are also preserved, since X∩Y = −((−X)∪
(−Y )), by De Morgan’s law. Therefore, to evaluate all our formulas, V must
be a Boolean algebra.

Also V must be closed under taking inverse images w.r.t. R. The set V
with Boolean operations and the above defined function R−1 is an example of
a modal algebra. In modal logic these algebras play the same role as Boolean
algebras in classical logic. A general definition of a modal algebra will be given
later on.

A Kripke frame (W,R) together with a set V satisfying these closure con-
ditions is called a general Kripke frame. A modal formula φ is said to be valid
on a general Kripke frame (W,R,V) if V (φ) = W for any valuation V taking
values in V.

General frames yield a slightly different version of Kripke semantics. It
is less visible, but has some technical preferences; they will be discussed in
section 3.5.
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3.3 An example of a modal calculus

Once we have defined semantics for formulas of a given formal language, we
can evaluate their truth. Semantics also allows us to describe properties of
mathematical structures in the chosen language.

Consider, for example, the formulas p → 3p and 33p → 3p. What do
they say about an accessibility relation? By applying the truth definition, one
can see that

(W,R) ⊨ p→ 3p iff R is reflexive;

(W,R) ⊨ 33p→ 3p iff R is transitive.

Recall that a relation R is reflexive, if xRx for all points x, and transitive, if
xRy and yRz imply xRz.

These and many other examples show that modal formulas can express
various properties of the accessibility relation. We point out that in some cases
a property expressible by a modal formula cannot be expressed by classical
first-order formulas. A well-known example of this kind is Löb’s formula

□(□p→ p) → □p

stating that R is transitive and Nötherian, i.e., there are no infinite sequences
(chains) of the form x0Rx1Rx2... (perhaps, with repetitions). On the other
hand, some first-order properties (for instance, irreflexivity) cannot be ex-
pressed by modal formulas.

Thus, sometimes the class of corresponding frames can be described in
classical first-order language (then the modal formula is called elementary),
but this is not always the case. In general the set of elementary modal formulas
is undecidable [Cha91].

Let us now turn from single modal formulas to modal calculi. As an exam-
ple, we first consider one of Lewis’s modal systems traditionally denoted by
S4.11

Definition 2 S4 is the set of theorems of the calculus given by the following
three groups of axioms (where p, q are propositional variables):

(1) all classical tautologies,
(2)

□(p→ q) ∧□p → □q,

3p ↔ ¬□¬p, 12

(3)

33p → 3p,

p → 3p;

11 We provide an equivalent formulation close to the one proposed by Gödel in [Göd33].
12 As usual, A ↔ B is an abbreviation for (A → B) ∧ (B → A).
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and the inference rules of Modus Ponens (MP), Substitution (SUB), and Ne-
cessitation (NEC):

φ, φ→ ψ

ψ
MP

φ(p)

φ(α)
SUB

φ

□φ
NEC

In the substitution rule, φ(α) is obtained from φ(p) by replacing each occur-
rence of p with α.

Initially S4 was introduced as a formalization of philosophical notions of
necessity and possibility. Later other interpretations and applications of S4
were found.

In particular, we have the following semantics for this system:

Theorem 1 S4 is the set of formulas that are valid on all transitive reflexive
frames.

(For the proofs of this and the next two theorems see, e.g., [CZ97] and
[BdRV01].) Thus, to “understand the laws” of S4 one can study formulas
valid on transitive reflexive frames.

In fact, this theorem can be strengthened:

Theorem 2 A formula φ belongs to S4 iff φ is valid on every transitive re-
flexive frame (W,R) such that |W | ≤ 2|φ|, where |W | is the cardinality of W ,
|φ| is the length of φ.

It follows that S4 is decidable: there exists an algorithm that for every input
formula φ gives an answer ‘yes’ if φ ∈ S4 and ‘no’ otherwise.13 Moreover, every
non-theorem is falsified in a “relatively small” frame — its size is exponentially
bounded in the length of φ. Furthermore, the following holds:

Theorem 3 S4 is PSPACE-complete14.

This theorem was proved in [Lad77]. It turns out that many other natural
modal systems are PSPACE-complete [Lad77,Spa93], and some of them are
of the same complexity as classical logic (coNP-complete). In fact, study of
complexity in modal logic and further interaction between modal logic and
computer science began from this Ladner’s result.

13 More generally, if a modal calculus C has only finitely many axioms and is complete
with respect to a class of finite frames, then it is decidable (Harrop’s Theorem). Indeed, on
the one hand, the set of theorems of C is enumerable. On the other hand, we can enumerate
all finite frames and for each of them effectively decide whether all theorems of C are valid
— we have only to check the validity of a finite set of axioms. It follows that the set of
non-theorems of C is enumerable. Now decidability follows from Post’s theorem [Mal70].
14 Recall that a decision problem Y is in the class PSPACE if it is decidable within a

polynomial (in the length of input) amount of space. A problem Y is PSPACE-complete if
it is in PSPACE and every problem in PSPACE is polynomial time reducible to Y . See, e.g.,
[AB09].
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3.4 Normal modal logics

As we noticed before, two of S4-axioms (group (3)) express transitivity and
reflexivity of a frame (it other words, they define the class of all transitive
reflexive frames).

However, in many cases they consider modal logics without these axioms
and respectively, frames with arbitrary accessibility relations.

Definition 3 A normal modal logic is the set of theorems of a calculus con-
taining the groups of axioms (1), (2) from Definition 2 and the inference rules
MP, NEC, and SUB.

In this paper we consider only normal modal logics. The smallest such logic
is denoted by K. It is axiomatized by the calculus containing the axioms (1)
and (2) (and rules as in Definition 3). Other modal logics contain some extra
axioms. We denote the modal logic with a set of extra axioms Ψ by K+Ψ . (In
particular, the set of all modal formulas is a logic, which is called inconsistent.)

Theorem 4 (Soundness theorem for Kripke semantics) The set of
modal formulas valid on a Kripke frame is a normal modal logic.

The proof readily follows from two observations. First, the axioms of K
are valid on every frame. Second, the set of modal formulas valid on a Kripke
frame is closed under the rules MP, NEC, and SUB (this is trivial for MP and
Nec; for SUB, this is an easy exercise).

Corollary 1 The set of modal formulas valid on a class F of Kripke frames
(i.e., on every frame from F) is a normal modal logic.

This set is called the modal logic of F and is denoted by ML(F). Logics
of this kind are called complete (more precisely, Kripke complete). We also say
that the logic ML(F) is complete with respect to the class F .

The following theorem is an analogue of Theorems 1,2, and 3 for the logic
K; now instead of transitive and reflexive frames, we consider arbitrary frames.

Theorem 5

(1) K is the logic of the class of all frames, moreover, of the class of all finite
frames.

(2) φ ∈ K iff φ is valid on every frame (W,R) such that |W | ≤ 2|φ|.
(3) K is decidable and moreover, PSPACE-complete.

For the proof see, e.g., [CZ97] or [BdRV01].
As we have mentioned, not every modal logic shares good semantic and

algorithmic properties with the logics K,S4. Not every modal logic is Kripke
complete (perhaps, the simplest example of an incomplete logic is the logic
K + □(□p ↔ p) → □p; see, e.g., [Gol92]). Moreover, there are continuum
many incomplete modal logics [Blo80].
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At the same time there exists a continuum of complete modal logics [Fin74].
Among them, continuum many are undecidable (or even non-enumerable),
because there are only countably many enumerable logics15.

3.5 Algebraic semantics

Although some modal logics are incomplete in Kripke semantics, there exists
another, algebraic semantics for modal formulas, in which all normal modal
logics happen to be complete. This semantics emerged in the 1930s, soon after
the first modal calculi were defined.

In algebraic semantics the main objects, where modal formulas are evalu-
ated, are so-called modal algebras.

We assume that the reader is familiar with the definition and basic proper-
ties of Boolean algebras (see, e.g., [BS81]). We will use the same notation for
the Boolean operations as for the logical connectives: ∨, ∧, ¬, ⊥, ⊤. A modal
algebra is a Boolean algebra with extra unary operations □ and 3 satisfying
the identities

3(a ∨ b) = 3a ∨3b;

3⊥ = ⊥;

□a = ¬3¬a.
.

For example, a topological space induces a modal algebra — the Boolean
algebra of its subsets with extra operations of closure and interior. The oper-
ation 3 sends a set Y to its closure (the set of all adherent points of Y ). The
interior operation □ sends a set Y to its interior (the set of all interior points
of Y ).

A modal algebra can also be obtained from a Kripke frame (W,R): take
the Boolean algebra of subsets of W with the preimage operation 3 mapping
Y ⊆ W to R−1(Y ), and put □Y = ¬R−1(¬Y ). Also, if (W,R,V) is a general
Kripke frame (see section 3.2), then V constitutes a modal algebra, the modal
algebra of (W,R,V).

Modal formulas can be regarded as terms in the signature of modal al-
gebras. So we can define the notion of truth of a modal formula in a modal
algebra:

Definition 4 A modal formula φ is true in a modal algebra A, if the identity
φ = ⊤ holds in A.

Theorem 6 The set of modal formulas that are true in a modal algebra A is
a normal modal logic.

This set is called the modal logic of A.
In algebraic semantics all modal logics are complete:

15 Every enumerating program can be saved in a file; the content of a file is encoded with
a natural number.
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Theorem 7 For every modal logic L there exists an algebra Lind(L), whose
logic is L.

Lind(L), the Lindenbaum-Tarski algebra of L, is constructed in a standard
way from modal formulas — as the quotient modulo the equivalence L ⊢
φ↔ ψ.

A variety is a class of algebras, where a given set of identities is true.
Due to algebraic completeness, there is a one-to-one correspondence between
normal modal logics and varieties of modal algebras. So study of normal modal
logics can be regarded as study of these varieties, and we can use methods of
universal algebra in the field of modal logic.

A systematic study of modal algebras was started in the 1940-50s in the
works by A. Tarski, J. McKinsey, B. Jónsson and others. In the paper [JT51],
Jónsson and Tarski proved a representation theorem for modal algebras, a gen-
eralization of the famous Stone’s representation theorem for Boolean algebras.
In particular, it follows that every modal algebra is isomorphic to the modal
algebra of a general frame, and every modal logic is the set of formulas valid
on a general frame.

Numerous properties of modal logics can be reformulated algebraically.
For example, consider the following property of a logic L: given a finite set of
propositional variables, there are only finitely many pairwise non-equivalent
in L formulas in these variables. This property is called local tabularity. Every
locally tabular logic is complete w.r.t. finite frames, so finitely axiomatizable
locally tabular logics are decidable. A well-known example of a locally tabular
logic is classical propositional logic. Modal logics K, S4 are not locally tabular,
while S5 and DL (see below) are. In algebraic terms, local tabularity of a
logic means local finiteness of its variety: every finitely generated algebra in
the variety is finite. Study of local tabularity in modal logic remains a field of
great interest. For recent developments cf. [Bez01], [She16], [SS16].

3.6 Other semantics

Besides Kripke and algebraic semantics, two other semantics are important for
propositional modal logics — topological (or neighbourhood) and provability.
Let us (very briefly) discuss them.

1. In section 3.5 we mentioned that every topological space induces a modal
algebra of its subsets. All these algebras satisfy the axioms of S4. A detailed
study of modal algebras arising in topology was initiated by J. McKinsey and
A. Tarski [MT44]. This lead to topological semantics of modal logics containing
S4. Neighbourhood semantics proposed by R. Montague and D. Scott is a
generalization of topological semantics suitable for a larger class of modal
logics — it is sound for every normal modal logic (and even for some weaker
systems). In neighbourhood models necessity is understood as truth in some
neighbourhood of a given point. See, e.g., [Pac17], [Che80] for details.
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Interaction between modal logic and topology is quite active nowadays. It
is included in a more general context of spatial logic and spatial reasoning,
where modal logic found different applications, cf. [APHvB07].

2. The idea of using modal operators for axiomatization of provability and
consistency was put forward by K. Gödel in the 1930s [Göd33]. Realization
of this idea was started much later, by Solovay’s work [Sol76]. That paper
provided a complete modal axiomatization of arithmetical provability, Gödel-
Löb logic GL (defined as K+□(□p→ p) → □p). Since that time modal logic
has become an important tool in proof theory.

4 Standard translation

As pointed out in section 2.2, semantics of a formal language proposes a mean-
ingful understanding of its expressions. In modern linguistics, semantics is de-
scribed as explication of texts, i.e., translating them into another language (of
“senses”), cf. [MCP95]. Semantics of modal logic can be represented in the
same way — as translation into the language of classical logic.

So Kripke semantics suggests for standard translation of modal formulas
to classical first-order formulas. It was introduced by J. Van Benthem in early
1970s (and earlier by G.E. Mints for intuitionistic formulas), see [vB88].

Let us recall the definition. Consider classical first-order formulas built
from a countable set {P1, P2, . . . } of unary predicate letters and a single bi-
nary letter R. Let L1 denote the set of all these formulas, and L0 the set of
formulas in L1 that do not contain P1, P2, . . . . Also, consider propositional
modal formulas built from propositional variables p1, p2, . . . By induction for
every modal formula φ we define its standard translation φ⋆(t) ∈ L1, a clas-
sical first-order formula with a single parameter t, according to the following
rules:

p⋆i (t) := Pi(t),

(¬φ)⋆(t) := ¬φ⋆(t),

(φ→ ψ)⋆(t) := φ⋆(t) → ψ⋆(t),

(φ ∧ ψ)⋆(t) := φ⋆(t) ∧ ψ⋆(t),

(φ ∨ ψ)⋆(t) := φ⋆(t) ∨ ψ⋆(t),

(⊥)⋆(t) := ⊥,
(⊤)⋆(t) := ⊤,
(□φ)⋆(t) := ∀x (R(t, x) → φ⋆(x)),

(3φ)⋆(t) := ∃x (R(t, x) ∧ φ⋆(x)),

where φ⋆(x) is the result of replacing of t by x in φ⋆(t) (and renaming bound
variables if necessary).
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Every Kripke modelM = (F, V ) on a frame F = (W,R)16 can be regarded
as a classical model M⋆ = (W,R, V (p1), V (p2), . . . ) of L1.

17

The next simple lemma describes the logical connection between M and
M⋆.

Lemma 1

(1) Let M = (F, V ) be a Kripke model on a frame F = (W,R). Then for every
a ∈W and modal formula φ,

M,a ⊨ φ ⇔ M⋆ ⊨ φ⋆(a).

(2) For every frame F and modal formula φ

F ⊨ φ ⇔ for any V, (F, V )⋆ ⊨ ∀t φ⋆(t).

The proof of (1) is by induction on the length of φ; (2) easily follows from
(1).

In follows that in many cases, propositional modal logics can be considered
as fragments of classical first-order theories.

Namely, let Σ be a set of sentences in L0, Mod(Σ) the class of all models
of Σ (in the classical sense). Clearly, these classical models can be considered
as Kripke frames; so we obtain the modal logic ML(Mod(Σ)).

On the other hand, Σ is a subset of L1, so it has models in the signature
{R,P1, P2, . . .}. These models are of form (F, V )⋆, where F ∈Mod(Σ).

By classical Gödel’s completeness theorem we obtain:

Theorem 8 φ ∈ML(Mod(Σ)) iff Σ ⊢ ∀t φ⋆(t) (in classical first-order pred-
icate calculus).

In particular, it follows that ML(Mod(Σ)) is embeddable in first-order
predicate calculus whenever Σ is finite:

Corollary 2 If Σ is finite, then

φ ∈ML(Mod(Σ)) ⇔ ⊢
∧
Σ → ∀t φ⋆(t).

Proof. By Theorem 8 and Deduction theorem.

Corollary 3 If Σ is finite (or even infinite, but decidable),18 then
ML(Mod(Σ)) is enumerable.

Proof. To obtain a computable enumeration of this modal logic, we generate
theorems of the classical theory with the set of axioms Σ. Note that this
set is enumerable (Fact 2, section 2.4). Along with this enumeration we can
select formulas of the form ∀t φ⋆(t), since the set of these formulas is clearly
decidable. Finally, a modal formula φ can be restored from ∀t φ⋆(t).

16 Strictly speaking, we should not use the same symbol R for a binary letter and a binary
relation. However, to simplify the notation, we ignore this formality.
17 In more details, this means that R (as a symbol) is interpreted by R (as a binary

relation), and each Pi by membership in V (pi).
18 In fact, the claim also holds for enumerable Σ.
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Here a question arises: if modal logics are embeddable in classical first-order
theories, why should we study them per se? For, classical first-order logic is
well developed and its properties have been known for a long time.

However, the situation is not that simple. First, not every modal logic is
complete with respect to models of the form Mod(Σ) — a well-known coun-
terexample is given by modal provability logic GL (see Sections 3.6, 3.3). So
for these “irregular” logics classical methods are inapplicable. Second, even for
“good” modal logics new methods had to be developed, as classical logic deals
with another language and other models. Speaking very informally, classical
logic can sometimes understand modal logic, but cannot always help it. Modal
logic is another world.

5 The logic of inequality

As another example of a modal logic we consider the logic of inequality, or the
Difference logic. Completeness, decidability, and complexity results for this
logic have been known for quite some time ([Seg76], [Seg80], [dSvEB90]). To
illustrate basic modal logic tools, we shall give proofs for these results.

For a set X, let ̸=X be the inequality relation on X; formally ̸=X is the
set of pairs {(x, y) | x, y ∈ X, x ̸= y}.

The logic of inequality is defined semantically — as the logic of a class of
Kripke frames:

L̸= :=ML{(X, ̸=X) | X is a non-empty set}.

5.1 Complete axiomatization

Set
DL := K+ {p→ □3p, 33p→ 3p ∨ p},

and let us show that L̸= = DL.
First let us characterize the DL-frames, i.e., frames validating DL (by

Soundness theorem 4, this means validity of two additional axioms).

Proposition 1 For a frame F = (W,R),

(1) F ⊨ p→ □3p iff R is symmetric,
(2) F ⊨ 33p → 3p ∨ p iff ∀x∀y∀z (xRyRz ⇒ xRz ∨ x = z). In the latter

case R is called weakly transitive.

Proposition 2 For a non-empty X, (X, ̸=X) is a DL-frame.

The proofs of both propositions are straightforward, so we skip them.
To prove completeness of DL in Kripke semantics we use the canonical

model. Let us recall its definition.
A set of formulas Γ is said to be inconsistent (in a logic L), if ¬(φ1 ∧ . . .∧

φk) ∈ L for some φ1, . . . , φk ∈ Γ ; otherwise, Γ is consistent (again, in L). Γ
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is L-maximal if it is consistent and all its proper extensions are inconsistent
in L.

For a set of formulas Γ put 3Γ := {3φ | φ ∈ Γ}.
The canonical frame of a logic L is FL = (WL, RL), where WL is the set of

all L-maximal sets and RL is defined as follows:

Γ RL Γ
′ := 3Γ ′ ⊆ Γ.

The canonical model ML := (FL, θL) of L is its canonical frame with the
valuation θL:

θL(p) := {Γ ∈WL | p ∈ Γ}
for each propositional variable p.

The next theorem is one of the most powerful tools in modal logic.

Theorem 9 (Canonical model theorem, CMT)

(1) For all Γ ∈WL,
φ ∈ Γ iff ML, Γ ⊨ φ.

(2)
φ ∈ L iff ML, Γ ⊨ φ for all Γ ∈WL.

A proof can be found, e.g., in [CZ97].
A modal logic is called canonical if it is valid on its canonical frame.

Lemma 2 Every canonical logic is complete.

Proof. By CMT, L contains the logic of its canonical frame. On the other
hand, L is contained in the logic of FL, since FL ⊨ L by canonicity. Thus we
have Kripke-completeness and moreover, completeness with respect to FL.

Now the following argument proves completeness for DL.

Proposition 3 The canonical frame FDL is symmetric and weakly transitive.

Proof. We abbreviate RDL to R.
To prove symmetry, assume that ΓR∆ for some maximal sets Γ,∆, and

show that ∆RΓ . Let φ ∈ Γ . Notice that the formula φ → □3φ is in DL.
By CMT we have first, MDL, Γ ⊨ φ, and second, MDL, Γ ⊨ φ → □3φ. Thus
MDL, Γ ⊨ □3φ. Since ΓR∆, it follows that MDL, ∆ ⊨ 3φ, and so 3φ ∈ ∆
(again by CMT). Thus φ ∈ Γ implies 3φ ∈ ∆. By definition, ∆RΓ .

Let us check the weak transitivity.
Suppose ΓR∆RΣ and Γ ̸= Σ. Let us show that ΓRΣ.
Suppose φ ∈ Σ. Since Γ ̸= Σ, there exists a formula ψ ∈ Σ such that

ψ ̸∈ Γ . By CMT, MDL, Σ ⊨ φ ∧ ψ. Since ΓR∆RΣ, it follows that MDL, Γ ⊨
33(φ ∧ ψ). Again by CMT,

MDL, Γ ⊨ 33(φ ∧ ψ) → 3(φ ∧ ψ) ∨ (φ ∧ ψ);

thusMDL, Γ ⊨ 3(φ∧ψ)∨(φ∧ψ). However, ψ ̸∈ Γ by assumption, so by CMT,
MDL, Γ ̸⊨ ψ. Hence MDL, Γ ̸⊨ (φ ∧ ψ). It follows that MDL, Γ ⊨ 3(φ ∧ ψ),
leave alone MDL, Γ ⊨ 3φ. Thus 3φ ∈ Γ by CMT.

Eventually we see that φ ∈ Σ implies 3φ ∈ Γ , i.e., ΓRΣ by definition.
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By Propositions 1, 3 we obtain

Proposition 4 DL is canonical.

Theorem 10 DL is Kripke-complete.

Proof. From Lemma 2 and Proposition 4.

Actually canonicity holds for a large class of modal logics. There is a re-
markable result (Sahlqvist theorem) stating canonicity for logics with axioms
of special form, so-called Sahlqvist formulas. Two axioms of the logic DL, and
also axioms of reflexivity and transitivity are examples of Sahlqvist formulas.
In particular, it follows that S4 is Kripke-complete. Exact formulation and
proof of Sahlqvist theorem can be found, e.g., in [CZ97].

Now we need another property of Kripke-complete logics.
Consider a frame F = (W,R). The restriction of R to V ⊆W is the relation

R↾V = R∩(V ×V ), i.e., for all y, z ∈ V we have y (R↾V ) z iff yRz. For x ∈W ,
put R(x) = {y | xRy}; for V ⊆W , put R(V ) = {y | ∃x ∈ V xRy}.

The cone in F with a root x is the frame (Wx, R↾Wx), where

Wx = {x} ∪R(x) ∪R(R(x)) ∪ . . . .

The following fact is well-known (cf. [CZ97], section 3.3):

Proposition 5 The logic of a frame is the intersection of the logics of its
cones.

Thus we have:

Proposition 6 A Kripke-complete logic is the logic of the class of cones of
its frames.

We now return to the logic DL. A frame (W,R) such that xRy for all
distinct x and y (i.e., ̸=W ⊆ R) is called a cluster. For example, every frame
of form (X, ̸=X) is a cluster. Obviously, clusters are DL-frames.

Proposition 7 Every cone in a DL-frame is a cluster. The other way round,
every cluster is a cone (with a root at any of its points).

Thus we obtain:

Proposition 8 DL is complete with respect to clusters.

We also need the following construction.

Definition 5 Consider frames F = (W,R), G = (V, S), and a map f : W →
V .

f is monotonic if for all x, y ∈W , xRy implies f(x)Sf(y);
f has the lift property, if for all x ∈ W, z ∈ V such that f(x)Sz, there

exists y ∈ R(x) such that f(y) = z.
A surjective monotonic map with the lift property is called a p-morphism.

The notation F ↠ G means the there exists a p-morphism from F onto G.
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Proposition 9 (p-morphism lemma) If F ↠ G, then L(F ) ⊆ L(G).

For the proof see, e.g., [CZ97], section 3.3.

Theorem 11 DL = L̸=.

Proof. By Proposition 8, DL is the logic of the class of clusters. This class
incudes all frames of form (X, ̸=X), thus DL ⊆ L̸=.

Let us check that L̸= ⊆ DL. We will show that for every cluster F = (W,R)
there exists a frame G = (X, ̸=X) such that G ↠ F . Let V be the set of all
the reflexive points in the frame F , and let V ′ be another copy of V such that
V ′ ∩W = ∅. Let i be a bijection from V ′ onto V . We put X = W ∪ V ′ and
define f : X →W by setting f(v) = v for v ∈W , and f(v) = i(v) for v ∈ V ′.
It is straightforward to check that f is a required p-morphism.

Therefore L(G) ⊆ L(F ), so L̸= ⊆ L(F ). Since F is an arbitrary cluster, it
follows that L̸= ⊆ DL.

5.2 Decidability and complexity

Theorem 12 DL is the logic of finite frames of the form (X, ̸=X). Moreover,
φ ∈ DL iff φ is valid on all frames (X, ̸=X) of size less than 2|φ|.

Proof. Clearly, the logic of finite frames of the form (X, ̸=X) includes DL.
To check the converse inclusion, we show that finite clusters falsify all

undesirable formulas. Suppose that φ ̸∈ DL. By Theorem 11, φ is not valid
on some frame F = (W, ̸=W ). We shall construct a finite frame F0 = (X, ̸=X)
falsifying φ.

For a valuation V and a point x we have M,x ⊨ ¬φ, where M = (F, V ).
Let φ′ be the result of replacing each □ in φ with ¬3¬. Then φ′ is equivalent
to φ in K, so M,x ⊨ ¬φ′. Now let Ψ = {3α1, . . . ,3αn} be the set of all
subformulas of φ′ beginning with 3. For every αi we define Vi ⊆W as the set
of all those points in M , where αi is true. Let Ui be the following subset of
Vi: if Vi contains at most two elements, we put Ui = Vi; otherwise, we chose
arbitrary a, b ∈ Vi and put Ui = {a, b}. Put X = U1 ∪ · · · ∪ Un ∪ {x}. Since
n is less than the length of φ, X has less than 2|φ| elements. For the frame
F0 = (X, ̸=) we define the valuation V0 by setting V0(p) = V (p) ∩ X; put
M0 = (F0, V0).

By the construction, for every y ∈ X and every variable p we have

M0, y ⊨ p ⇔ M,y ⊨ p.

It is not difficult to check that this equivalence extends to every subformula ψ
of φ′ (by induction on the length of ψ):

M0, y ⊨ ψ ⇔ M,y ⊨ ψ.

We consider only the less obvious case ψ = 3αi.
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If M0, y ⊨ 3αi, then M0, y
′ ⊨ αi for some y′ ̸= y; by the induction hy-

pothesis, M,y′ ⊨ αi; thus, M,y ⊨ 3αi. Conversely, assume that M,y ⊨ 3αi

and show that M0, y ⊨ 3αi. Note that in this case Vi is non-empty, and so
Ui is; moreover, Ui contains a point y′ distinct from y. Then y′ ∈ X; also
M,y′ ⊨ αi by the definition of Ui. By the induction hypothesis, M0, y

′ ⊨ αi,
and so M0, y ⊨ 3αi, as required.

Since M,x ̸⊨ φ′, from the above equivalence we obtain that M0, x ̸⊨ φ′, so
M0, x ̸⊨ φ. It follows that F0 ̸⊨ φ.

Theorem 13 DL is decidable and moreover, coNP-complete19.

This theorem is immediate from Theorem 12. The decidability follows from
finite axiomatizability of DL and completeness with respect to finite frames
(see Section 3.3). Moreover, every non-theorem of DL is falsified in a finite
frame (X, ̸=X) of size < 2|φ|; to falsify a formula, we need to “guess” the
size of X (which is polynomial in length of the formula) and the valuation for
variables occurring in the formula.

5.3 The logic of the difference relation on an infinite set

We have shown that DL is the logic of the class of all frames of the form
(X, ̸=X). Now let us consider the logic of a single infinite frame (X, ̸=X). As
we shall see, this logic does not depend on X.

For n ≥ 0, consider the formula

Adn := 3p1 ∧ . . . ∧3pn → 3(3p1 ∧ . . . ∧3pn)

(as usual, for n = 0 the conjunction φ1 ∧ . . . ∧ φn is assumed to be ⊤; thus
Ad0 is equivalent to 3⊤).

Let C be the class of all finite clusters containing at least one reflexive
point.

Theorem 14 Let X be an infinite set. Then

(1) ML(X, ̸=X) = ML(C). Moreover, (X, ̸=X) ⊨ φ iff φ is valid on all finite
clusters from C of size ≤ 2|φ|.

(2) ML(X, ̸=X) = DL+ {Adn | n ≥ 0}.

Corollary 4 For infinite X, ML(X, ̸=X) does not depend on X.

19 The decision problem for Y is in the class coNP if the decision problem for the comple-
ment of Y is in the class NP; recall that NP is the class of problems decidable in polynomial
time by non-deterministic Turing machines. A problem Y is coNP-hard if every problem
from coNP is polynomial time reducible to Y ; a problem is coNP-complete if it is in coNP
and also coNP-hard. Cf., e.g., [AB09].
Note that the decision problem for any consistent modal logic L is coNP-hard, since the
decision problem for classical propositional logic is trivially reducible to decision problem
for L.
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Corollary 5 Let X be a non-empty set. Then the validity problem on the
frame (X, ̸=X) is decidable and coNP-complete.

To prove Theorem 14, we need several auxiliary facts.

Proposition 10 (W,R) ⊨ Adn ⇔

∀x∀y1 . . . ∀yn (xRy1 ∧ . . . ∧ xRyn ⇒ ∃z(xRz ∧ zRy1 ∧ . . . ∧ zRyn)).

Proof. A simple exercise.

Put L = DL+ {Adn | n ≥ 0}.

Proposition 11 Let F be a cone. Then F is an L-frame iff F is an infinite
cluster or a cluster containing a reflexive point.

Proof. By Proposition 10.

The logic L (as well as DL) is canonical (e.g., since every Adn is a Sahlqvist
formula), i.e., FL ⊨ L.

Lemma 3 Let F be a cone in the canonical frame FL. Then F contains a
reflexive point.

Proof. Assume that F = (W,R) is an infinite cluster. Consider the set of
formulas Ψ = {3φ | ∃x (φ ∈ x ∈ W )} and show that it is consistent in L.
Let Ψ0 = {3φ1, . . . ,3φn} be a finite subset of Ψ . By definition, there exist
points y1, . . . , yn such that φi ∈ yi ∈ W , 1 ≤ i ≤ n. In an infinite W there
exists a point x ∈W distinct from y1, . . . , yn. Since xRyi for all i, the formula
3φ1 ∧ . . . ∧3φn in true at x in the canonical model; thus Ψ0 is consistent in
L. Hence the consistency of Ψ follows.

Every consistent set can be extended to a maximal one (this statement is
called Lindenbaum lemma), so Ψ ⊆ z for some z ∈ WL. By the definition of
the set Ψ (and by the definition of the canonical relation) it follows that zRLy
for all y ∈ W . Since F is a cluster and RL is symmetric, we have z ∈ W .
Therefore zRLz.

Proof of Theorem 14. Since all axioms of L are valid on the frame (X, ̸=X),
we have L ⊆ ML(X, ̸=X).

It is easy to check that (X, ̸=X) ↠ F for any F ∈ C, thus ML(X, ̸=X) ⊆
ML(C).

Let us check thatML(C) ⊆ L. Assume that φ /∈ L. Then φ is falsified in a
cone F of the canonical frame FL (by CMT and Proposition 5). Thus for some
valuation V and some point x we have (F, V ), x ⊨ ¬φ. By Lemma 3, there
exists a reflexive point y in the frame F . Similarly to the proof of Theorem 12
we can construct a cluster F0 of cardinality ≤ 2|φ| containing both x and y,
such that φ is not valid on F0 and y is reflexive in F0.

Thus L = ML(X, ̸=X) = ML(C), which proves Theorem 14.



26 Ilya Shapirovsky, Valentin Shehtman

Note that if |X| = n+1, then (X, ̸=X) ⊨ Adi for i < n, but (X, ̸=X) ̸⊨ Adn.
Hence it easily follows that the logic L does not have a finite axiomatisation,
that is, for every finite set of axioms Ψ we have L ̸= K + Ψ . In fact, a more
general theorem holds:

Theorem 15 If L = K + Ψ , then for every m there exists a formula in Ψ
containing more than m distinct variables.

Proof. Suppose for the sake of contradiction that for some m every formula in
Ψ contains at most m distinct variables.

Consider the frame F = (X, ̸=X), where X = {0, . . . , 2m}, and the frame
F ′ = ({0, . . . , 2m − 1}, R), where xRy iff (x ̸= y or x = y = 0). It is not
difficult to show that if a formula ψ contains at most m distinct variables,
then F ⊨ ψ ⇔ F ′ ⊨ ψ (the details can be found in [SS05]). The formula
Ad2m is falsified in the frame F , which means that F is not an L-frame. It
follows that F falsifies some formula φ ∈ Ψ . Since φ contains at most m
distinct variables, it is also falsified in F ′, by the above observation. On the
other hand, F ′ belongs to the class C from Theorem 14, thus F ′ validates L
containing φ. We have a contradiction.

Historical remarks
Theorem 11 was proved by K. Segerberg [Seg76] (see also [Seg80]). Ac-

cording to [dR92], the observation on complexity of DL was first made in an
unpublished paper [dSvEB90].

Results on the logic of infinite sets are more recent. Apparently, Theorem
15 was first proved in [KS10] (see also [KSS12]). As far as we know, Theorem
14 has never been published before; an axiomatization of the logic of (X, ̸=X)
was also known to L. Maksimova (a personal communication to the authors).
Some syntactic and algebraic properties of extensions of DL were considered
in recent works [KM10], [Kar12].

5.4 Standard translation for DL and S5

Using Theorem 11 we can describe a standard translation for the logic DL,
with R as the difference relation. In this case, the translation φ̸= of a modal
formula φ is defined as follows:

p̸=i (t) := Pi(t), ⊥̸=(t) := ⊥, ⊤ ̸=(t) := ⊤,
(¬φ) ̸=(t) := ¬φ̸=(t),

(φ→ ψ)̸=(t) := φ̸=(t) → ψ ̸=(t),

(φ ∧ ψ)̸=(t) := φ̸=(t) ∧ ψ ̸=(t),

(φ ∨ ψ)̸=(t) := φ̸=(t) ∨ ψ ̸=(t),

(□φ) ̸=(t) := ∀x (x ̸= t→ φ̸=(x)),

(3φ)̸=(t) := ∃x (x ̸= t ∧ φ ̸=(x)).
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The Standard translation theorem (Theorem 8) and Theorem 11 yield an
embedding of DL in classical predicate calculus (with equality):

Corollary 6 DL ⊢ φ ⇔ ⊢ ∀t φ̸=(t).

In a certain sense, DL is a “more expressive” version of the well-known
Lewis’s system S5 defined as follows:

S5 := S4+ p→ □3p.

In Kripke semantics three axioms of this logic correspond to reflexivity, tran-
sitivity, and symmetry of binary relations:

Proposition 12 (W,R) ⊨ S5 ⇔ R is an equivalence relation.20

The logics S5 and DL are similar in many respects. It is easy to see that
the cones of S5 are frames of the form (X,X × X). The modal operators □
and 3 on these frames are interpreted as the universal and the existential
quantifiers, respectively. By constructions similar to those from Sections 5.1
and 5.2, one can prove the following theorem (for details, see, e.g., [CZ97]):

Theorem 16 (1) S5 is the logic of the class of all frames of the form
(X,X ×X).21

(2) φ ∈ S5 iff φ is valid on all finite frames (X,X ×X) of size ≤ |φ|.
(3) S5 is decidable and moreover, coNP-complete.

The standard translation for S5 is presented in the following way:

(□φ)⊗(t) := ∀xφ⊗(x),

(3φ)⊗(t) := ∃xφ⊗(x),

together with preservation of the classical connectives.
From the Standard translation theorem and Theorem 16 we obtain

Corollary 7 S5 ⊢ φ ⇔ ⊢ ∀t φ⊗(t).

We have mentioned that DL is more expressive than S5. More precisely,
DL is interpretable in S5 as follows. For a modal formula φ, define the modal
formula φ⊙:

p⊙ := p, ⊥⊙ := ⊥, ⊤⊙ := ⊤,
(¬φ)⊙ := ¬φ⊙,

(φ→ ψ)
⊙
:= φ⊙ → ψ⊙,

(φ ∧ ψ)⊙ := φ⊙ ∧ ψ⊙,

(φ ∨ ψ)⊙ := φ⊙ ∨ ψ⊙,

(□φ)⊙ := □φ⊙ ∧ φ⊙

(3φ)
⊙
:= 3φ⊙ ∨ φ⊙.

20 Algebraic models of S5 are the so-called monadic algebras, see [HG98].
21 This fact and Corollary 7 was first proved by M. Wajsberg (1933).
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It is easy to see that (X,X ×X) ⊨ φ iff (X, ̸=X) ⊨ φ⊙.22 Now from Theorems
11 and 16 we obtain

Corollary 8 S5 ⊢ φ ⇔ DL ⊢ φ⊙.

6 Conclusion

In this paper we discuss only some basic properties of propositional modal
logics — Kripke completeness, decidability, algorithmic complexity, finite ax-
iomatizability. Many questions are left beyond our consideration, but deserve
special studies. We point out that general problems in the field of modal logic
are usually nontrivial — at least because there are continuum many modal
logics.

Let us give a brief account of the current research.

• Algebraic problems
As pointed out in section 3.5, propositional modal logics exactly correspond
to varieties of modal algebras. Thus logical and algebraic problems are
closely related, and many tasks are solved by combination of logical and
algebraic methods. For more details see [CZ97], [BdRV01]. Also note that
modal algebras (and respectively, modal logics) arise from other algebraic
structures related to logic, such as cylindric and relation algebras; cf., e.g.,
[MV96].

• Algorithmic problems
In section 2.4 we mentioned algorithmic problems that make sense for
axiomatic calculi, the main of them is the decision problem. It turns out
that propositional modal logics are typically decidable, but quite often
it is hard to prove decidability of particular logics. A related problem is
estimating their computational complexity. Numerous particular questions
about properties of modal logics can also be put as algorithmic problems.
In general this field is rather active, especially because of applications of
modal logics in CS. Cf. [BvBW06], chapters 3, 7; [CZ97], chapters 17, 18.

• Correspondence theory
A modal formula φ corresponds to a classical L0-formula Φ if on any frame
the validity of φ is equivalent to the truth of Φ (see section 4). Correspon-
dence theory studies this relation between modal and classical formulas.
Typical questions are the following.
When a modal formula has a classical correspondent, and the other way
round? When a correspondent can be constructed by an algorithm? How
complex this algorithm can be? A nontrivial model-theoretic technique
is used in this field, but still there exist open difficult problems. Cf.
[BvBW06], chapter 5.

• General theory of neighbourhood and topological models of modal logics

22 In fact, the same holds for every two frames (W,R) and (W,R⊙), where R⊙ is the
reflexive closure of R, i.e., R⊙ is obtained by adding pairs of form (x, x) to R.
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The main idea of neighbourhood (or topological) models is interpreting
necessity as truth in some neighbourhood. So modal logic can deal with
topological notions such as limit points, continuity, connectedness etc. Cf.
[BvBW06], chapters 1, 16; [APHvB07], chapter 5; [Pac17]. Although neigh-
bourhood semantics is a natural generalization of Kripke semantics, its
theory is much less developed, and there are more questions than answers
in this field. For example, unlike Kripke semantics, here we know very little
about the completeness problem. In general, it is unclear, what topologi-
cal properties are expressible in modal languages and how to axiomatize
complicated structures like smooth manifolds, dynamic systems etc.

• Syntactic properties of modal calculi
These are different kinds of interpolation property, the disjunction prop-
erty, unification, admissibility of inference rules. Many deep results were
obtained in this area, but general problems remain open. Cf., e.g., [CZ97]
or [BvBW06], chapter 8.

• The present paper concentrates on modal logics in propositional languages.
Investigation of first-order modal logics is a separate large area of active
research. Cf. [FM98] for the philosophical aspects, [GSS09] for the mathe-
matical results in this field.

In section 3.2 we pointed out that the origin of ‘points’ or ‘possible worlds’
in Kripke models and the meaning of atomic propositions are not essential
from the mathematical viewpoint. So the formal approach to semantics leaves
room for various applications of modal logic.

Let us mention some areas of these applications.

• Formal verification
If a Kripke frame is regarded as a collection of states and transitions of a
computing system (a ‘transition system’, in computer science terminology),
then modal formulas can describe properties of computation processes.
This allows us to apply modal language to problems of model checking, cf.
[BvBW06], ch. 17; [CGP99].

• Description logics
Description logics (or ‘ontology languages’) were developed for formal rep-
resentation of facts from specific subject areas (data or knowledge bases). In
many cases description languages are closely related to modal languages, so
methods of modal logic are successfully applicable. Description logics are
already involved in construction of several huge and efficient knowledge
bases, cf. [BvBW06], chapter 13.

• Proof theory
One of the most important applications of modal logics is in mathematical
logic itself, namely in proof theory. Modal logics of this kind are called
provability logics. In section 3 we mentioned a well-known example, the
logic GL, where necessity is understood as provability in formal arithmeti-
cal theories. For more details about provability logics cf. [Boo93], [AB04],
and [BvBW06], chapter 16.
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• Epistemic logics
Independently from the knowledge representation field, modal logicians are
developing epistemic logics, where ‘knowledge’ and ‘belief’ are treated as
modalities. They are related to provability logics ([BvBW06], chapter 16),
and also to systems of information transmission [FMHV03].

• Spatial logics
Spatial logics are formal systems describing interaction of spatial objects.
The latter can be points or subsets of a certain space with a geometric or
topological structure, e.g., intervals on a line, domains in space etc. For
application of modal logics in this field cf. [APHvB07], chapters 5, 6, 9, 10.

Finally let us emphasize a global problem of modal logic related to its
mathematical side and essential for applications — combining modal systems.
There are different kinds of combined and extended modal logics developed in
recent decades — polymodal logics (such as temporal logics or modal products,
cf. [KWZG03]), dynamic modal logics and modal µ-calculus (cf. [BvBW06],
chapters 1, 12), graded modal logics (cf. [BvBW06], chapter 4) etc. Logics
emerging in these areas successfully combine expressive power with algorithmic
properties.
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