
Math-Net.Ru
All Russian mathematical portal

A. V. Kudinov, I. B. Shapirovsky, Partitioning Kripke
frames of finite height,
Izvestiya: Mathematics, 2017, Volume 81, Issue 3, 592–617

https://www.mathnet.ru/eng/im8476

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have

read and agreed to these terms of use

https://www.mathnet.ru/eng/agreement

Download details:

IP: 98.48.52.233

May 20, 2025, 09:52:42

https://www.mathnet.ru/eng/im8476
https://www.mathnet.ru/eng/im8476


Izvestiya: Mathematics 81:3 592–617 Izvestiya RAN : Ser. Mat. 81:3 134–159

DOI: https://doi.org/10.1070/IM8476

Partitioning Kripke frames of finite height

A. V. Kudinov and I. B. Shapirovsky

Abstract. In this paper we prove the finite model property and decidabil-
ity of a family of modal logics. A binary relation R is said to be pretransi-
tive if R∗ =

S
i6m Ri for some m > 0, where R∗ is the transitive reflexive

closure of R. By the height of a frame (W, R) we mean the height of the
preorder (W, R∗). We construct special partitions (filtrations) of pretran-
sitive frames of finite height, which implies the finite model property and
decidability of their modal logics.

Keywords: modal logic, finite model property, decidability, pretransitive
relation, finite height.

§ 1. Introduction and main results

The language of propositional modal logic is the language of classical proposi-
tional logic with additional connectives. Although it is simple, it turns out to be
an effective tool for describing properties of relations. The resulting theories often
have better properties (such as, for example, algorithmic decidability or low com-
plexity) than the corresponding first-order theories. This led to the widespread use
of modal logic in computer science (see, for example, [1], [2]) and also in other areas
of mathematical logic: in the study of fragments of predicate logics, proof theory,
set theory and algebraic logic (see, for example, [3]–[6]).

Algebraic and relational models. The first modal calculi arose in the 1930s as
a formalization of the concept of possible truth [7]. It soon became clear that modal
systems have a natural algebraic interpretation for which logic is the equational
theory of a certain algebra: the derivability of a formula in the calculus corresponds
to the truth of an identity in the algebra. The central objects turned out to be
modal algebras that are Boolean algebras with additional additive operations, and
the corresponding theories are modal logics (more precisely, normal propositional
modal logics). For example, the closure algebra of a topological space (the Boolean
algebra of subsets of the space with the additional unary operation that takes every
set to its closure) is a modal algebra.

The study of modal algebras and their theories began in the 1940s in the works
of Tarski, McKinsey, Jónsson, and others. In [8], two of the deductive systems
described in [7] (S4 and S5) were regarded as theories of closure algebras and of
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monadic algebras; the first results on the decidability of modal logics were proved
in [9]. In [10], Jónsson and Tarski proved a representation theorem for modal alge-
bras which is a generalization of Stone’s theorem on the representation of Boolean
algebras.

In contrast to Boolean algebras having the same equational theory in the non-
trivial case (classical propositional logic), modal algebras lead to more varied the-
ories: a continuum of different modal logics already occurs in the case of a single
modal operation [11]. In particular, this implies that among the modal logics there
are algorithmically undecidable ones.

It turned out that relational semantics, or Kripke semantics, which was proposed
in the late 1950s, is of fundamental importance in the further development of modal
logic. A non-empty set with relations on it is called a (Kripke) frame. We shall
mainly be interested in the case when there is a unique binary relation in the frame.
Corresponding to such a frame (W,R) is a modal algebra A(W,R), which is the
Boolean algebra of all subsets of W with an additional unary operation ♦R: for
V ⊆W the set ♦R(V ) is the preimage of V under R:

♦R(V ) = {w | ∃ v ∈ V wRv}.

The modal logic of a frame or of a class of frames is the equational theory of the
corresponding algebras.

The interpretation of modal formulae on sets with relations led to the appear-
ance of diverse applications of modal logic. For example, any relational structure is
a model of a first-order language. This enables us to view modal logics as fragments
of first-order theories; in many cases, such fragments turn out to be decidable [3].
A frame F (with a valuation in A(F )) can be regarded as a system of transitions
of some computing system. In this case, modal formulae describe properties of the
computational process [2]. Modal logics found another important application in
proof theory. In the 1930s, Gödel had already suggested the use of modal opera-
tors to describe provability and consistency in formal arithmetic [12]. A complete
axiomatization of arithmetical provability in the modal language was constructed
(much later) by Solovay [13]. In relational semantics, this logic is defined by finite
partial orders, which implies its decidability.

The finite model property and decidability. The problem of algorithmic decid-
ability is one of the key questions in the study of modal logics. In many cases,
decidability follows from the finite model property (Harrop’s theorem). A logic
has the finite model property if it is the logic of some class of finite frames. The
finite model property of modal logics has been systematically studied since the
mid-1960s [14]–[16]. It is known that many logics have this property. Logics with-
out it also exist (moreover, there are continuously many such logics; see, for exam-
ple, Theorem 6.1 in [17]), but they are rather exotic in the case of a single modal
operator and are usually constructed artificially. At the same time, there are a num-
ber of naturally defined logics for which the question of possessing the finite model
property (and of decidability) is open.

Apparently, the most well-known question of this kind is the finite model prop-
erty and decidability of logics of (m,n)-frames, that is, frames in which the relation
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satisfies the condition Rn ⊆ Rm. For example, the transitivity R ◦ R ⊆ R is
a condition of this kind. In this case (m = 1, n = 2), as well as in all cases when
one of the parameters is less than 2 and in the trivial case m = n, the finite model
property and decidability have been known since the early 1970s; see [16]. The finite
model property and decidability in other cases are old open problems; see Prob-
lem 11.2 in [17] and Problem 6 in [18] (in the latter, this task was called ‘one of the
most intriguing open problems in Modal Logic’). The answer is not known for any
m,n > 1, m 6= n.

We denote the class of all (m,n)-frames by F(m,n).

Question 1. For what values of m and n does the logic of class F(m,n) have the
finite model property? When it is decidable?

Other examples of logics for which the finite model property and decidability
are not known are the so-called pretransitive frames, that is, frames in which the
property of m-transitivity holds for some m > 0: R∗ =

⋃
i6mRi. The answer is

positive for m = 0 and m = 1; in other cases, the question is open.
We denote by G(m) the class of all m-transitive frames.

Question 2. For what values of m does the logic of class G(m) have the finite
model property? When it is decidable?

In some cases, the finite model property can be established by constructing
special partitions of frames.

Let B be a partition of a set W and let R be a binary relation on W . We define
a relation RB on the elements of B by setting for arbitrary U, V ∈ B

U RB V ⇔ ∃u ∈ U ∃ v ∈ V uRv.

The following fact is known: the logic of a class of frames F turns out to have the
finite model property if for every finite partition A of any frame (W,R) ∈ F there
is a finite refinement B of A such that (B, RB) ∈ F . In this case we say that F
admits minimal filtrations.

We now give another sufficient condition for the finite model property. A par-
tition B of a set W is said to be tuned if the following condition holds for any
U, V ∈ B:

∃u ∈ U ∃ v ∈ V uRv ⇒ ∀u ∈ U ∃ v ∈ V uRv.

A frame is said to be tunable if all its finite partitions admit a tuned finite refine-
ment. The logic of every class of tunable frames has the finite model property.

In the case when F is the class of all the frames of some logic, the second
condition is stronger: if all the frames in F are tunable, then this class admits
minimal filtrations.

We note that the above conditions do not require the study of axiomatic or other
syntactic properties of the logic in question and enable one to obtain results on the
finite model property in a purely semantic way.

Main results. In this paper we construct partitions of pretransitive frames of
finite height. A partial order has finite height h if h is the largest cardinality
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of chains in this order. To every frame (W,R) one can naturally assign a partial
order whose elements are the equivalence classes with respect to the relation

w ∼R v ⇔ wR∗v and vR∗w,

where R∗ stands for the transitive reflexive closure of R. These classes are ordered
by the relation 6R: [w] 6R [v] ⇔ wR∗v. The height of a frame is the height of
the corresponding partial order.

In Theorem 1 (see § 3) it is established that every frame of finite height in which
the number of elements in every equivalence class of ∼R does not exceed some fixed
positive integer N is tunable. This crucial theorem enables us to prove the stability
with respect to minimal filtrations of various classes of frames.

We note that when n > m every (m,n)-frame is (n − 1)-transitive. We have
succeeded in constructing the partitions we need for all the frames in the classes
F(m,n) and G(m), n > m > 1, whose height is finite. Let F(m,n, h) be all
the frames of class F(m,n) of height not exceeding h, and F∗(m,n) all the (m,n)-
frames of finite height. Similarly, we define the classes of m-transitive frames of
finite height G(m,h) and G∗(m).

Theorem 2 (see § 4) establishes the finite model property of logics of the classes
F(m,n, h), G(m,h), F∗(m,n) and G∗(m) for n > m > 1 and h > 1.

Corollary. When n > m > 1 the logic of class F(m,n) has the finite model
property if and only if it coincides with the logic of class F∗(m,n). A similar
criterion holds for the logics of classes G(m).

Further results are related to the study of logics of pretransitive frames as deduc-
tive calculi.

Theorem 3 (see § 5) is an analogue of Glivenko’s theorem for pretransitive logics.
We recall that, in the Kripke semantics, the intuitionistic logic is the logic of all
partial orders, and the classical logic is the logic of partial orders of height 1.
Glivenko’s theorem asserts that the deducibility of a formula ϕ in the classical
propositional logic is equivalent to the deducibility of ¬¬ϕ in the intuitionistic
logic. Theorem 3 describes the corresponding reducibility for pretransitive logics.

Theorem 4 (see § 5) describes the modal axiomatics for the class of pretransi-
tive frames of finite height. In particular, it implies the decidability of the logics
of F(m,n, h) and G(m,h) for all n > m > 1 and h > 1.

The paper is organized as follows. In § 2 we give some preliminary information.
In § 3 we construct tuned partitions of frames of finite height. In § 4 we construct
partitions of frames of finite height in the classes F(m,n) and G(m). In § 5 we
consider problems of modal axiomatization. A discussion of the results and some
of their consequences are given in § 6.

§ 2. Preliminaries

2.1. Language and semantics. The set of modal formulae is constructed from
a countable set of variables PV = {p1, p2, . . .} and constants ⊥ (‘false’) and >
(‘true’) using the connectives ∧, ∨, ¬, → and ↔ and the unary connective ♦
(‘diamond ’).
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Modal logics as deductive systems will be defined in § 5, where axiomatization
problems are considered. For the needs of this section and the following two, the
notion of the logic of Kripke frames is sufficient.

By a (Kripke) frame we mean a pair (W,R), where W is a non-empty set and
R ⊆ W ×W . By a valuation on a frame we mean a map θ : PV → P(W ), where
P(W ) stands for the set of all subsets of W . A model M over a frame F = (W,R) is
a triple (W,R, θ), where θ is a valuation on F . The truth value of a modal formula
at a point of the model is defined by induction on the length of the formula and is
denoted by M,w |= ϕ: for a variable p we set M,w |= p ⇔ w ∈ θ(p). Boolean
connectives are interpreted in the standard way: for example, M,w |= ¬ϕ ⇔
M,w 6|= ϕ. For the connective ♦ we set

M,w |= ♦ϕ ⇔ ∃ v (wRv and M,v |= ϕ).

A formula ϕ is true in a model M if it is true at every point of M , ϕ is valid in
a frame F if it is true in every model over F , and ϕ is valid in a class of frames F
if ϕ is valid in every frame in F . These properties are denoted by the symbols
M |= ϕ, F |= ϕ, and F |= ϕ, respectively. For a set of formulae Φ, the symbol
F |= Φ means that F |= ϕ for all ϕ ∈ Φ, and then we say that F is a Φ-frame. The
expressions M,x |= Φ, M |= Φ and F |= Φ are treated in a similar way.

The set of all formulae that are valid in a class F is denoted by LogF and
is called the logic 1 of F . A set L of formulae is called a Kripke complete logic if L is
the logic of some class of frames. L has the finite model property if L is the logic of
some class of finite frames.

2.2. Partitions and filtrations. A formula is said to be satisfiable in a frame F
(in a class of frames F) if it is true at some point of some model over F (over some
frame in F).

The finite model property of a Kripke complete logic L = LogF is equivalent
to the fact that every formula satisfiable in F is satisfiable in some finite L-frame.
One of the ways to find such a frame is the filtration method.

Definition 1. Consider a frame F = (W,R) and an equivalence relation ∼ on W .
By the minimal filtration with respect to ∼ (or the ∼-filtration) of the frame F we
mean the frame F/∼ = (W/∼, R/∼), where for U, V ∈W/∼ we set

U R/∼V ⇔ ∃u ∈ U ∃ v ∈ V uRv.

Definition 2. Let M be a model and ϕ a formula. We define the equivalence ∼ϕ

induced by the formula ϕ on the points of M as follows: we write u ∼ϕ v if every
subformula of ϕ is simultaneously true or simultaneously false in u and v.

We say that an equivalence ∼ agrees with a formula ϕ in the model M if ∼⊆∼ϕ.

1In the introductory section, the logic of frames was defined as an equational theory. Strictly
speaking, there is a formal difference between the language of modal formulae and the language
of identities of a modal signature. However, this difference is inessential: the validity of a modal
formula ϕ in a frame (W,R) is equivalent to the condition that, in the algebra A(W,R), the value
of ϕ coincides with W , which is the unit of the algebra, for every valuation. The fact that an
identity ϕ = ψ holds in the algebra A(W,R) means the validity of the modal formula ϕ ↔ ψ in
the frame (W,R).
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We denote the number of subformulae of ϕ by l(ϕ). Obviously, in every model,
the number of classes of ∼ϕ does not exceed 2l(ϕ).

Proposition 3 (lemma on minimal filtrations; see, for example, [19]). If ϕ is true
at one of the points of a model M over a frame F and the equivalence ∼ agrees
with ϕ in M , then ϕ is satisfiable in F/∼.

The above definition of a minimal filtration is a special case of the more general
construction of a filtration of a Kripke model. Filtrations arose in the late 1960s
in [14] and [15] and later became one of the main tools of proving the finite model
property of modal logics [17]. In the case of minimal filtrations, this method reduces
to the construction of suitable partitions of frames. As usual, by a (finite) partition
of a set W we mean a (finite) family of pairwise-disjoint non-empty sets whose union
coincides with W . If A and B are partitions of W and ∀B ∈ B ∃A ∈ A B ⊆ A,
then B is called a refinement of A. We denote by ∼A the equivalence relation whose
set of classes coincides with A: A = W/∼A. Thus, the points of the frame F/∼A
are the elements of A. Instead of F/∼A and R/∼A, we write FA and RA.

Definition 4. We say that a class F of frames admits minimal filtrations if for
any frame F ∈ F and for every finite partition of the domain of F there is a finite
refinement of this partition B such that FB ∈ F . If, moreover, there exists a function
f : N → N such that for every frame F ∈ F and every finite partition A of the
domain F there is a refinement B such that FB ∈ F and

|B| 6 f(|A|),

then we say that F admits f-bounded minimal filtrations.

Proposition 5. If F admits minimal filtrations, then LogF has the finite model
property. If F admits f-bounded minimal filtrations, then every formula ϕ satisfi-
able in F is satisfiable in a frame in F whose size does not exceed f(2l(ϕ)).

Proof. Let ϕ be satisfiable in F . Then ϕ is true at one of the points of some
model M over some frame F ∈ F . Consider the equivalence ∼ϕ on M . Let
A be the equivalence classes of ∼ϕ. The partition A has a finite refinement B
such that FB ∈ F . The fact that B is a refinement of A is equivalent to the fact
that ∼B ⊆ ∼A. By the lemma on minimal filtrations, ϕ is satisfiable in FB. If
|B| 6 f(|A|), then, since |A| 6 2l(ϕ), it follows that the size of B (that is, the size
of the frame thus constructed) does not exceed f(2l(ϕ)). This completes the proof of
the proposition. �

2.3. Tuned partitions of frames.

Definition 6. Let F = (W,R) be a frame. A partition A of the set W is said to
be tuned if the following condition holds for every U, V ∈ A:

∃u ∈ U ∃ v ∈ V uRv ⇒ ∀u ∈ U ∃ v ∈ V uRv.

An equivalence relation on W partitions F tunably if the set of its equivalence
classes is a tuned partition.
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A frame is said to be tunable if every finite partition of the frame has a tuned
finite refinement. A frame is said to be f-tunable, where f : N → N, if each of
its finite partitions A admits a tuned finite refinement B such that |B| 6 f(|A|).

The following fact is known (it was apparently noticed for the first time in [20]).

Proposition 7. If A is a tuned partition of F , then Log{F}⊆ Log{FA}.

Proof. It can readily be seen that, if A is a tuned partition, then the algebra A(FA)
can be embedded in the algebra A(F ). �

This fact implies the following assertion.

Proposition 8. If F is a class of tunable frames, then the logic LogF has the
finite model property. If F is a class of f-tunable frames, then every formula ϕ sat-
isfiable in F is satisfiable in some LogF-frame whose size does not exceed f(2l(ϕ)).

Proof. The proof is similar to that of Proposition 5. �

Proposition 9. Let L = LogF and let F be the class of all L-frames. If F con-
sists of tunable frames, then it admits minimal filtrations.

Proof. This follows from Proposition 7. �

2.4. Frames of finite height. Let R be a binary relation on W . We denote the
transitive reflexive closure of R by R∗. We recall that

R0 = Id(W ) = {(x, x) | x ∈W}, Ri+1 = Ri ◦R, R∗ =
⋃
i>0

Ri.

Consider the frame F = (W,R). We define the following relation on W :

x ∼R y ⇔ xR∗y and yR∗x.

This is an equivalence relation: it is symmetric by definition, and the transitivity
and reflexivity are inherited from R∗. The equivalence classes with respect to ∼R

are called the clusters of F , and the frame skF = (W/∼R,6R), where

[x] 6R [y] ⇔ xR∗y,

is called the skeleton of F (here [z] stands for the equivalence class of z with respect
to ∼R). The relation 6R is well defined in this way because, if x′ ∼R x and y′ ∼R y,
then

xR∗y ⇔ x′R∗y′.

It can readily be seen that 6R is a partial order. Moreover, if F is a partial order,
then F and skF are isomorphic. We also set [x] <R [y] ⇔ [x] 6R [y] and [x] 6= [y]
(in this case, this means that (y, x) /∈ R∗).

A partial order has height h if it contains a chain of cardinality h and there are
no chains of larger cardinality. By the height h(F ) of an arbitrary frame F we mean
the height of its skeleton.



Partitioning Kripke frames 599

We denote by h(F, x) the depth of a point x in frame F , that is, the height of
the restriction F �{y | xR∗y}. We recall that by the restriction of R to V ⊆ W
one means the relation R�V = R ∩ (V × V ), and by the restriction of a frame
F = (W,R) to a non-empty subset V ⊆W one means the frame F �V = (V,R�V ).

The family of points of depth i in F is called the ith level of F . Thus, any frame
of height h is partitioned into h levels. The clusters corresponding to points of the
same level form an antichain in the skeleton of F .

We note that the condition h(F ) = 1 is equivalent to the condition that R∗ is
an equivalence relation.

The logics of preorders of finite height are well studied ([21], [22]). In particular,
it is known that they have the finite model property. We are interested in the more
general case when only the pretranstivity property holds: a frame is said to be
pretransitive if it is m-transitive for some m > 0, that is, it has the property

R∗ = R6m,

where
R6m =

⋃
06i6m

Ri.

It can readily be seen that m-transitivity is equivalent to the property

Rm+1 ⊆ R6m.

Pretransitivity follows from many natural properties. Obviously, every finite
frame is pretransitive. Moreover, if F is a frame of finite height h and the cardi-
nalities of its clusters are uniformly bounded (that is, there is a positive integer N
such that the cardinality of every cluster does not exceed N), then this frame is
pretransitive (namely, m-transitive with m = hN − 1).

We also note that, if Rn ⊆ Rm for n > m, then the frame is (n − 1)-transitive.
Thus, F(m,n) ⊆ G(n− 1) when n > m.

§ 3. Tuned partitions of frames of finite height

Let expi
2(x) denote the tower of exponentials of height i:

expi
2(x) = 22. . .

2x }
i times.

Theorem 1. Every frame of finite height in which the cardinalities of the clusters
are uniformly bounded by some finite N is tunable. Moreover, if h is the height of
such a frame, then this frame is f-tunable, where

f(x) = exph
2

(
(N + h+ 1)(log2 x+N)

)
.

Proof. Let F = (W,R) be a frame satisfying the conditions of the theorem and
let A be some finite partition of W . We will define, by induction, a sequence of
equivalence relations

∼0⊆ · · · ⊆∼h,
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tunably partitioning W , and a sequence of the corresponding tuned partitions
Bi = W/∼i. Each of these partitions will be a refinement of A, and the last
partition Bh will turn out to be finite.

We write h(x) instead of h(F, x). We set

Xi = {x | h(x) > i}, Yi = {x | h(x) = i}, Zi = {x | h(x) < i},

that is, Yi is the ith level of the frame F , Zi are the points of depth less than i,
and Xi are the points of depth exceeding i.

We write
∼0 = Id(W ),

that is, B0 is the partition of W into singletons. This partition is obviously a tuned
refinement of A.

Let 1 6 i 6 h. We will define an equivalence relation ∼i. It extends ∼i−1

with some pairs of points of the ith level and, at the same time, partitions it into
finitely many classes. To this end, we need some auxiliary constructions. We first
distinguish the ‘upper’ part of the partition Bi−1:

B′i−1 = {B ∈ Bi−1 | B ⊆ Zi}.

We now fix a signature Ωi consisting of a single binary predicate symbol, unary
predicate symbols PB for all B ∈ B′i−1, unary predicate symbols TA for all A ∈ A,
and a constant symbol. For every element u ∈ Yi we define an S(u), which is
a structure of signature Ωi. Its domain is the cluster C of F containing the point u.
The binary relation on C is the restriction R�C. For every B ∈ B′i−1 we define
a subset of C interpreting PB :

Pu
B = {w ∈ C | ∃ v ∈ B wRv}

(that is, Pu
B is the intersection of C with the preimage of B under R). For every

A ∈ A, we take Tu
A = C ∩ A for the set interpreting TA. For the constant, we

choose u. Thus,

S(u) = (C,R�C, (Pu
B)B∈B′i−1

, (Tu
A)A∈A, u).

On the ith level, we define an equivalence relation ≈i. For u, v ∈ Yi we set

u ≈i v ⇔ the structures S(u) and S(v) are isomorphic.

Finally, we put
∼i =∼i−1 ∪ ≈i .

It can readily be seen by induction that
1) if u ∼i v, then u and v belong to the same level;
2) if h(u) > i, then u ∼i v ⇔ u = v;
3) if h(u) < i, then u ∼i v ⇔ u ∼i−1 v;
4) if h(u) = i, then u ∼i v ⇔ u ≈i v.

Lemma 10. The partition Bi is tuned for all i 6 h.
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Proof. We proceed by induction on i. The partition B0 is tuned. Let 1 6 i 6 h.
Let U, V ∈ Bi and u0Rv0 for some u0 ∈ U and v0 ∈ V . We consider an arbitrary

u ∈ U and claim that there is a v ∈ V for which uRv.
If u0 ∈ Xi, then U = {u0}, that is, u = u0, and there is nothing to prove.
If u0 ∈ Zi, then U and V are placed in the ‘upper’ part of the frame Zi, on

which ∼i coincides with ∼i−1. Therefore, U, V ∈ Bi−1. By the induction hypothe-
sis, Bi−1 is tuned, and therefore uRv for some v ∈ V .

Finally, let u0 ∈ Yi. In this case u ≈i u0, and therefore there is an isomorphism
g : S(u0) → S(u). Let C be the cluster of u0 and D that of u. Since u0 is a point
of the ith level and u0Rv0, two cases are possible: v0 ∈ Yi and v0 ∈ Zi.

The first case: v0 ∈ Yi. In this case, u0 and v0 are points of the same level.
Since u0Rv0, it follows that u0 and v0 belong to the same cluster, u0, v0 ∈ C. We
write v = g(v0) and claim that uRv and v ∈ V . We have g(u0) = u, g(v0) = v
and u0(R�C)v0, and hence u(R�D)v, and therefore uRv. Since g is an isomorphism
of the structures S(u0) and S(u), and we have g(v0) = v, it follows that g is an
isomorphism of S(v0) and S(v). Indeed, the structures corresponding to points of
the same cluster differ only by a constant. Therefore, v0 ∼i v, that is, v ∈ V .

The second case: v0 ∈ Zi. In this case, V ∈ B′i−1, and the signature Ωi contains
the symbol PV . Since u0Rv0, it follows that u0 ∈ Pu0

V . Since S(u0) and S(u) are
isomorphic, we obtain u ∈ Pu

V , that is, uRv for some v ∈ V . �

Lemma 11. The partition Bi is a refinement of A for all i 6 h.

Proof. We proceed by induction on i. The partition B0 is a refinement of A. Let
1 6 i 6 h.

We must verify the inclusion ∼i ⊆ ∼A. By the induction hypothesis, we have
∼i−1 ⊆ ∼A, and therefore it suffices to verify the inclusion ≈i⊆∼A. Let u ≈i v.
For some A ∈ A we have u ∈ A. Then u ∈ Tu

A. Since S(u) and S(v) are isomorphic,
it follows that v ∈ T v

A, and hence v ∈ A. �

It can readily be proved by induction that all the sets B′0, . . . ,B′h are finite.
Indeed, B′0 = ∅ since Z1 = ∅. If i > 0, then

B′i = B′i−1 ∪ (Yi/≈i).

If B′i−1 is finite, then the signature Ωi is finite, and therefore the number of
non-isomorphic structures of cardinality at mostN in this signature is finite. Hence,
the partition Yi/≈i is finite.

Since Zh+1 = W , it follows that B′h = Bh, and therefore Bh is finite. Thus, Bh

is a tuned finite refinement of A, and the first assertion of the theorem is proved.
We now estimate the cardinality of Bh.

Lemma 12. When i > 0,

|Yi/≈i| 6 N2|A|N2N |B′i−1|+N2
. (1)

Proof. To define an Ωi-structure (up to isomorphism), one must
1) determine the cardinality M of its domain, 1 6 M 6 N ;
2) define a binary relation (one of 2M2

);



602 A. V. Kudinov and I. B. Shapirovsky

3) define sets interpreting the symbols PB , B ∈ B′i−1 (this gives us 2M |B′i−1|

variants);
4) define sets interpreting the symbols TA, A ∈ A (it can readily be seen that

this gives us |A|M variants);
5) choose a constant (M variants).

Thus,
|Yi/≈i| 6 N2N2

2N |B′i−1||A|NN.

This completes the proof of the lemma. �

We now estimate the cardinality of Bh. To this end, we estimate the cardinality
of |B′i| for 1 6 i 6 h. We proceed by induction and show that

|B′i| 6 expi
2

(
(N + i+ 1)(log2 |A|+N)

)
.

By (1) we obtain

|B′1| = |Y1/≈1| 6 N2|A|N2N |B′0|+N2
= N2|A|N2N2

6 2(N+2)(log2 |A|+N).

Using the induction hypothesis and the inequalities N > 1 and |A| > 1, we have

|B′i+1| 6 |B′i|+ |Yi+1/≈i+1|

6 expi
2

(
(N + i+ 1)(log2 |A|+N)

)
+N2|A|N2N |B′i|+N2

6 expi
2

(
(N + i+ 1)(log2 |A|+N)

)
+N2|A|N2N expi

2((N+i+1)(log2 |A|+N))+N2

6 (N2|A|N + 1)2N expi
2((N+i+1)(log2 |A|+N))+N2

6 22N |A|N2N expi
2((N+i+1)(log2 |A|+N))+N2

= 2N(log2 |A|+N+2)+N expi
2((N+i+1)(log2 |A|+N))

6 2expi
2((N+i+1)(log2 |A|+N))+N expi

2((N+i+1)(log2 |A|+N))

= 2(N+1) expi
2((N+i+1)(log2 |A|+N))

6 2expi
2((N+i+2)(log2 |A|+N)) = expi+1

2

(
(N + i+ 2)(log2 |A|+N)

)
.

Thus, if x is the cardinality of the original partition A, then the cardinality of
the tuned partition Bh = B′h is bounded by exph

2

(
(N + h + 1)(log2 x + N)

)
. This

completes the proof of the theorem. �

§ 4. Filtrations in the classes F(m, n, h) and G(m, h)

We claim that for all n > m > 1 and h > 1 the logics of the classes F(m,n, h)
and G(m,h) and also of the classes F∗(m,n) and G∗(m) have the finite model
property. This result is known in the case of height 1: the filtrations for G(m, 1)
were constructed in [23], and the proof for the frames F(m,n, 1) was obtained
in [24]. Using Theorem 1, we shall extend these results to the case of arbitrary
finite height. To this end, one needs to get rid of infinite clusters.
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Lemma 13. Let A be a finite partition of an (m,n)-frame F , n > m > 1. Then
there is a refinement B of A such that

1) the skeletons of the frames F and FB are isomorphic;
2) all the clusters in FB are finite and of cardinalities at most (n−m)|A|;
3) FB is an (m,n)-frame.

Before turning to the construction of partitions of (m,n)-frames, we make several
auxiliary observations.

Consider an arbitrary frame F = (W,R). A finite non-empty sequence w0 . . . wn

of elements of W is called a path in F if wiRwi+1 for all i<n. The length of the
path is l(w0 . . . wn) = n. When w0 = wn, the path is called a w0-loop (or simply
a loop). In particular, every sequence of length 1 is a loop of length 0. If the end of
a path α coincides with the beginning of a path β, then the union α◦β of the paths
is the concatenation of the sequences α′ and β, where the sequence α′ is obtained
from α by deleting the last element. In this case, α ◦ β is a path whose length is
the sum of lengths of α and β.

When w ∈ W , let (G(w), ◦) be the monoid of all w-loops. Its identity element
is the loop w of length 0. For a w-loop α we set, as usual, α0 = w and αi+1 = α◦αi.

When k > 0, let gk(α) be the remainder on division of the length of α by k. We
write

Gk(w) = {gk(α) | α ∈ G(w)}.

Proposition 14. Gk(w) is a subgroup of Zk for every k > 0, w ∈W .

Proof. If α and β are w-loops, then gk(α) + gk(β) = gk(α ◦ β) ∈ Gk(w), and
gk(αk−1) is the inverse of gk(α). �

Proposition 15. If R∗ = W ×W , then

Gk(w) = Gk(v)

for every k > 0 and w, v ∈W .

Proof. Let z ∈ Gk(v), that is, z = gk(γ) for some v-loop γ. We claim that z ∈
Gk(w). Let α be a path from v to w and β a path from w to v (paths of this kind
exist because R∗ = W ×W ). Consider the w-loop

δ = β ◦ (α ◦ β)k−1 ◦ γ ◦ α.

We have l(δ) = l(γ) + kl(α ◦ β), that is, gk(δ) = z and z ∈ Gk(w). This completes
the proof of the proposition. �

When d > 0, we define a relation �d on W as follows:

w �d v ⇔ there is a path from w to v whose length is divisible by d.

Obviously, �d is a preorder on any frame.
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Proposition 16. Let R∗ = W ×W .
1) If d divides the length of every loop, then �d is an equivalence relation and

|W/�d| 6 d.

2) For every k > 0 there is a d such that d divides k, d divides the length of
every loop, and

�d⊆�k .

Proof. 1) Let us verify the symmetry. Let α be a path from w to v such that d
divides l(α). Since R∗ = W ×W , there is a path β from v to w. The path α ◦ β is
a loop, and therefore d divides l(α ◦ β). Then d also divides l(β).

We claim that |W/�d| 6 d. Let W contain at least two distinct points. Then
there is a path from every point to a different point, and therefore R satisfies the
condition

∀w ∃ v wRv.

Therefore, the frame contains a path w1 . . . wd. Every point w ∈ W is equivalent
to one of the points wi. Indeed, there is a path α from wd to w. Then w �d wi

when i = d− gd(α).
2) Consider a point u ∈ W and the group Gk(u). If this group is trivial, then

we set d = k. Otherwise, let d be the least non-zero element of Gk(u). By Propo-
sition 14, this element divides the length of every u-loop. Therefore, by Proposi-
tion 15, d divides the length of any loop in the frame.

It remains to construct a path from w to v, which is a multiple of k, in the case
when w �d v. If d 6= k, then there is a v-loop β such that gk(β) = d. Therefore, if α
is a path from w to v which is a multiple of d, then, since d divides k, the length
of α ◦βi is divisible by k for some i. This completes the proof of the proposition. �

Proposition 17. Consider a frame F = (W,R) and an equivalence ∼⊆∼R on F .
Let F = (W,R) be a ∼-filtration of the frame F . Then

1) W/∼R = {C | C ∈W/∼R}, where for a cluster C ∈W/∼R we write

C = {D ∈W/∼ | D ⊆ C};

2) the skeletons of the frames F and F are isomorphic.

Proof. Let w denote the ∼-class of a point w.
We note that

wR∗v ⇔ w(R )
∗
v. (2)

For if wR∗v, then wRiv for some i, and w(R )
i
v by the definition of R. The converse

implication holds because ∼⊆∼R.
It follows from (2) that

w ∼R v ⇔ w ∼R v. (3)

Therefore, if X is a cluster in F , then C = ∪X is a cluster in F , and X = C. If C
is a cluster in F , then, by (3) again, C is a cluster in F .

The map C 7→ C is an isomorphism between the skeletons of the frames F and F
by (2). This completes the proof of the proposition. �
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Proof of Lemma 13. Let {Ci}i∈I be the clusters of the frame F = (W,R), that is,
the equivalence classes with respect to the relation ∼R. We write Ri = R�Ci. We
note that R∗i = Ci × Ci. We put k = n − m. By Proposition 16, there is an
equivalence relation ∼i on Ci such that, if w ∼i v, then k divides the length of
some path from w to v and

|Ci/∼i| 6 k. (4)

Define an equivalence on every cluster Ci as follows:

≈i =∼i ∩ ∼A .

By (4) we have
|Ci/≈i| 6 k|A|. (5)

Define an equivalence relation ≈ on W and the corresponding partition B:

≈=
⋃
i∈I

≈i, B = W/≈.

Since ≈⊆∼A, it follows that B is a refinement of A. Moreover, ≈⊆∼R. Therefore,
by Proposition 17, the skeletons of the frames F and FB are isomorphic, and the
cardinalities of the clusters of FB are bounded by k|A|.

It remains to show that FB is an (m,n)-frame.
We note that if [u]≈RB[v]≈, then uRzk+1v for some z > 0. Indeed, by the

definition of RB, there are u′ ≈ u and v′ ≈ v such that u′Rv′. Since u′ ∼i u and
u′ ∼j u for some i, j ∈ I, it follows that there are paths α from u to u′ and β from v
to v′ whose lengths are divisible by k.

Let [u]≈(RB)n[v]≈. Then uRzk+nv for some z > 0. Since F is an (m,n)-frame, it
follows that Rzk+n ⊆ · · · ⊆ Rn ⊆ Rm. Therefore, uRmv. Hence, [u]≈(RB)m[v]≈. �

Here is an analogue for m-transitive frames of the lemma proved above.

Lemma 18. Let A be a finite partition of an m-transitive frame F , m > 1. Then
there is a refinement B of A such that

1) the skeletons of the frames F and FB are isomorphic;
2) all the clusters in FB are finite and of cardinalities at most |A|;
3) FB is m-transitive.

Proof. The proof of this fact is simpler than that of the previous lemma. For
the filtration, we need not construct a path of a given length. It suffices to show
that every path of length exceeding m can be shortened to a path of length not
exceeding m.

Let us define {Ci}i∈I and Ri in the same way as in the proof of Lemma 13. The
partition B is defined more simply:

≈=∼A ∩ ∼R, B = W/≈.

By the arguments used in the proof of Lemma 13, B is a refinement of A, the
skeletons of the frames F and FB are isomorphic, and the cardinality of the clusters
of FB are bounded by |A|.
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It remains to show that FB is m-transitive. Since ≈⊆∼R, from [u]≈RB[v]≈ one
can infer that uRz+1v for some z > 0. Thus, if [u]≈(RB)m+1[v]≈, then uRm+1+zv
for some z > 0. Since F is m-transitive, it follows that uRzv for some z 6 m.
Hence, [u]≈(RB)z[v]≈. �

Theorem 2. Let n > m > 1 and h > 1. Then the logics of the classes

F(m,n, h), F∗(m,n), G(m,h), G∗(m)

have the finite model property.

Proof. Let ϕ be satisfiable in some frame F ∈ F∗(m,n) and let h be the height
of F . Then ϕ is true at one of the points of some model M over F . Consider
the equivalence ∼ϕ on M . Let A be the equivalence classes of ∼ϕ. Applying
Lemma 13, we obtain a frame G ∈ F∗(m,n) of finite height h in which the for-
mula ϕ is also satisfiable. Moreover, all the clusters in G are finite and uniformly
bounded, and therefore, applying Theorem 1 to the partition B corresponding to
the equivalence ∼ϕ in an appropriate model over G, we obtain a tuned partition C
of the frame G such that ϕ is satisfiable in GC . The finite model property of the
logics of the classes F(m,n, h) and F∗(m,n) now follows from Proposition 7.

The proof of the theorem for the classes G(m,h) and G∗(m) is completely anal-
ogous. One must only use Lemma 18 instead of Lemma 13. This completes the
proof of the theorem. �

§ 5. Modal axiomatization

5.1. Definability. We write �ϕ = ¬♦¬ϕ,

♦0ϕ = ϕ, ♦i+1ϕ = ♦♦iϕ, ♦6mϕ =
m∨

i=0

♦iϕ,

�0ϕ = ϕ, �i+1ϕ = ��iϕ, �6mϕ =
m∧

i=0

�iϕ.

We can readily verify the following facts.

Proposition 19.
1) (W,R) is an m-transitive frame ⇔ (W,R) |= ♦m+1p→ ♦6mp.
2) (W,R) is an (m,n)-frame ⇔ (W,R) |= ♦np→ ♦mp.

It is well known that for preorders the property h(F ) 6 h can be expressed
by a modal formula; see, for example, [17], Proposition 3.44. Namely, define (by
induction) formulae Bh, h > 0, as follows:

B1 = p1 → �♦p1, Bh+1 = ph+1 → �(♦ph+1 ∨Bh).

For every preorder F ,

F |= Bh ⇔ h(F ) 6 h.
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We describe correspondingr formulae for m-transitive frames. Let Bh(m) denote
the formula Bh written using the operators �6m and ♦6m:

B1(m) = p1 → �6m♦6mp1, Bh+1(m) = ph+1 → �6m(♦6mph+1 ∨Bh(m)).

Obviously, in every model over an m-transitive frame we have

M,x |= ♦6mϕ ⇔ ∃ y(xR∗y and M,y |= ϕ),

M, x |= �6mϕ ⇔ ∀ y(xR∗y ⇒M,y |= ϕ).

This implies the following assertion.

Proposition 20. Let F be an m-transitive frame. Then

F |= Bh(m) ⇔ h(F ) 6 h.

A class of frames F is said to be modally definable by a set of formulae Φ if

F ∈ F ⇔ F |= Φ.

Proposition 21. Let m,n, h > 1. The class G(m,h) is modally definable by the
formulae {♦m+1p→ ♦6mp, Bh(m)}. When n > m, the class F(m,n, h) is modally
definable by the formulae {♦np→ ♦mp, Bh(n− 1)}.

Proof. The proof follows from Propositions 19 and 20. �

5.2. Pretransitive logics. A set L of modal formulae is called a logic (to be
more precise, a propositional normal modal logic) if

1) L contains all propositional tautologies;
2) L contains the formulae ¬♦⊥ and ♦(p1 ∨ p2) → ♦p1 ∨ ♦p2;
3) L is closed with respect to the Modus Ponens rule, the substitution rule, and

the monotonicity rule, that is,2

ϕ→ ψ ∈ L ⇒ ♦ϕ→ ♦ψ ∈ L.

The smallest logic is denoted by K. If L is a logic and Φ a set of formulae, then
L + Φ denotes the smallest logic containing L ∪ Φ.

The logic of a class of frames is a logic in the sense of this definition. We recall [17]
that S4 = K+{p→ ♦p, ♦♦p→ ♦p} is the logic of the class of all (finite) preorders
and S5 = S4 + {B1} is the logic of the class of (finite) frames in which the relation
is an equivalence.

It follows from Sahlqvist’s theorem (see, for example, Theorem 10.30 in [17])
that the following assertion holds.

Proposition 22. For all m,n > 0 we have LogF(m,n) = K+{♦np→ ♦mp} and
Log G(m) = K + {♦m+1p→ ♦6mp}.

2The definition in which the formulae ¬♦⊥ and ♦(p1 ∨ p2) → ♦p1 ∨ ♦p2 are replaced by
the formula �(p1 → p2) → (�p1 → �p2) and the monotonicity rule is replaced by the rule
ϕ ∈ L ⇒ �ϕ ∈ L is more common. We use different definition because, in the modal language
under consideration, ♦ is a base connective and � is defined as an abbreviation. It can readily be
seen that these definitions are equivalent (see, for example, Remark 4.7 in [25]).
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Definition 23. A logic is said to be pretransitive if it contains the formula of
m-transitivity ♦m+1p → ♦6mp for some m > 0. The symbol trans(L) denotes the
least m with this property.

By Proposition 19, all the logics Log G(m), m > 0, are pretransitive.

Proposition 24. Let m,n > 0 and L = LogF(m,n). Then
1) L is pretransitive and trans(L) = n− 1 for n > m;
2) L is not pretransitive when n 6 m.

Proof. If (W,R) ∈ F(m,n) and n > m, then Rn ⊆ R6n−1. Therefore, L is pretran-
sitive and trans(L) 6 n − 1. On the other hand, the frame ({1, . . . , n}, R), where
iRj ⇔ j = i+1, is an (m,n)-frame, because Rn = ∅. However, it is not l-transitive
for any l < n− 1.

To prove the second part, we consider a frame (N, R), where

R = {(i, i+ 1) | i ∈ N} ∪ {(i, i) | i ∈ N}.

By the reflexivity, the length of any path can be arbitrarily extended in this frame,
and therefore this is an (m,n)-frame when n 6 m. At the same time, this frame is
not l-transitive for any l. This completes the proof of the proposition. �

5.3. Glivenko’s theorem and the finite model property. Glivenko’s theorem
asserts that the derivability of a formula ϕ in the classical propositional logic is
equivalent to the derivability of ¬¬ϕ in the intuitionistic logic. The corresponding
reducibility holds for S4 and S5 [26]:

ϕ ∈ S5 ⇔ ♦�ϕ ∈ S4.

In Kripke semantics, intuitionistic logic is the logic of all partial orders, and the
classical logic is the logic of partial orders of height 1 (see, for example, [17]).
Similarly, S4 is the logic of preorders and S5 is the logic of equivalence relations,
that is, of preorders of height 1. We now formulate an analogue of Glivenko’s
theorem for pretransitive logics.

Let L be a pretransitive logic and let m = trans(L). We write

L[h] = L + {Bh(m)}.

We also write ♦∗ϕ = ♦6mϕ and �∗ϕ = �6mϕ.

Theorem 3. If L is a pretransitive logic, then

ϕ ∈ L[1] ⇔ ♦∗�∗ϕ ∈ L.

Proof. Let ψ be a formula and let ψ∗ denote the result of replacing ♦ by ♦∗ in ψ
(resp. replacing � by �∗). It is known that the set {ψ | ψ∗ ∈ L} is a logic and
contains S4 (see, for example, [27]).

Let ♦∗�∗ϕ ∈ L. Then ♦∗�∗ϕ ∈ L[1]. Since p → �∗♦∗p ∈ L[1], it follows that
♦∗�∗p→ p ∈ L[1]. Hence, ♦∗�∗ϕ→ ϕ ∈ L[1] and ϕ ∈ L[1].
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We carry out the proof in the reverse direction by induction on the length of
a derivation of ϕ in L[1].

Suppose that ϕ = p → �∗♦∗p. The formula ♦�(p → �♦p) is valid in every
finite preorder, and hence ♦�(p→ �♦p) ∈ S4, and therefore ♦∗�∗ϕ ∈ L.

The case in which ϕ is obtained as a result of applying the substitution rule is
trivial. Consider the cases of applying the Modus Ponens rule and the monotonicity.

Let ψ, ψ → ϕ ∈ L[1] for some ψ. By the induction hypothesis, ♦∗�∗ψ and
♦∗�∗(ψ → ϕ) ∈ L. Then �∗♦∗�∗(ψ → ϕ) ∈ L (Lemma 1.3.45 of [27]). The
formula ♦�p ∧ �♦�(p → q) → ♦�q is derivable in S4 since it is valid in every
preorder. Therefore, ♦∗�∗ϕ ∈ L.

Suppose that ϕ = ♦ψ1 → ♦ψ2 and ψ1 → ψ2 ∈ L[1]. By the induction hypothesis,
♦∗�∗(ψ1 → ψ2) ∈ L. We claim that ♦∗�∗(♦ψ1 → ♦ψ2) ∈ L. Let m = trans(L).
By Proposition 22, LogG(m) ⊆ L. The formula

♦6m�6m(ψ1 → ψ2) → ♦6m�6m(♦ψ1 → ♦ψ2)

is valid in every m-transitive frame and therefore belongs to L. Hence,
♦6m�6mϕ ∈ L. This completes the proof of the theorem. �

Recall the notion of a generated submodel [17]. Let F = (W,R) be a frame and
let M = (F, θ) be a model. By the restriction of M to V 6= ∅ we mean the model
M�V = (F �V, θ′), where θ′(p) = θ(p)∩V for all p ∈ PV . When V ⊆W we say that
R(V ) = {y | ∃x ∈ V xRy} is the image of V under R. If R(V ) ⊆ V , then F �V
and M�V are called a generated subframe of F and a generated submodel of M ,
respectively. The following assertion holds.

Proposition 25 (generated submodel lemma). Let F = (W,R), let M = (F, θ),
let V be a non-empty subset of W , and let R(V ) ⊆ V . In this case,

1) if x ∈ V , then M,x |= ϕ ⇔ M�V, x |= ϕ;
2) if F |= ϕ, then F �V |= ϕ.

Theorem 3 enables us to formulate the following necessary conditions for the
decidability and the finite model property of pretransitive logics.

Corollary 26. Let L be a pretransitive logic. If L is decidable, then L[1] is decid-
able. If L has the finite model property, then L[1] has the finite model property.

Proof. The first assertion follows immediately from Theorem 3.
Let L have the finite model property. We claim that L[1] is the logic of the class

of all finite L-frames of height 1. Let ϕ /∈ L[1]. Then ♦∗�∗ϕ /∈ L by Theorem 3.
Therefore, �∗♦∗¬ϕ is true at one of the points of some model M over some finite
L-frame F . Then ¬ϕ is true at some point x of one of the maximal clusters C
of M . By the generated submodel lemma, M�C, x |= ¬ϕ and F �C is an L-frame.
It remains to note that F �C is a frame of height 1. �

Proposition 27. Let L be a pretransitive logic. Then
1) L[1] ⊇ L[2] ⊇ L[3] ⊇ · · · ⊇ L;
2) if L is consistent, then so is L[1] (and hence so are all logics L[h], h > 1).
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Proof. The inclusion L ⊆ L[h] is obvious. To prove the inclusion L[h + 1] ⊆ L[h],
let m = trans(L). Since Bh(m) ∈ L[h], we have ♦6mph+1 ∨ Bh(m) ∈ L[h]. Then
�6m(♦6mph+1 ∨Bh(m)) ∈ L[h], which implies that

Bh+1(m) = ph+1 → �6m(♦6mph+1 ∨Bh(m)) ∈ L[h].

Let L be consistent. We claim that L[1] is consistent. The formula ¬♦�⊥ is
valid in every partial order, and therefore belongs to S4. Hence, ¬♦6m�6m⊥ ∈ L.
Therefore, ♦6m�6m⊥ /∈ L. By Theorem 3, it is true that ⊥ /∈ L[1]. This completes
the proof of the proposition. �

5.4. Kripke completeness of logics of finite height. We shall formulate a suf-
ficient condition for the Kripke completeness of logics containing formulae of finite
height.

Recall the definition of the canonical model of a consistent logic L (see, for
example, [25]). A set Γ of formulae is said to be L-inconsistent if ¬ ∧ Γ0 ∈ L for
some finite Γ0 ⊆ Γ. A set Γ is said to be L-maximal if it is L-consistent and every
proper extension of Γ turns out to be L-inconsistent. It is well known that every L-
consistent set is contained in an L-maximal consistent set (Lindenbaum’s lemma).
By the canonical frame of a consistent logic L we mean the frame FL = (WL, RL),
where WL is the set of all L-maximal sets and RL is defined as follows:

Γ1RLΓ2 ⇔ {♦ϕ | ϕ ∈ Γ2} ⊆ Γ1.

The canonical model ML is the canonical frame with the valuation θL, where θL(p) =
{Γ ∈WL | p ∈ Γ}. The following important fact is well known.

Proposition 28 (canonical model theorem). If L is a consistent logic, then
1) ∀Γ ∈WL (ML,Γ |= ϕ ⇔ ϕ ∈ Γ);
2) L = {ϕ |ML |= ϕ}.

A logic is said to be canonical if it is valid in its canonical frame. By the canonical
model theorem, every canonical logic L is Kripke complete: L = Log{FL}.

Proposition 29. Suppose that F = (W,R) is the canonical frame of a logic L.
Then

1) for every i > 0 we have

xRiy ⇔ ∀ϕ(ϕ ∈ y ⇒ ♦iϕ ∈ x);

2) if L is m-transitive, then

xR∗y ⇔ ∀ϕ(ϕ ∈ y ⇒ ♦6mϕ ∈ x).

Proof. The proof of the first part can be found in Corollary 5.10 of [17]. Let us
prove the second part.
Necessity. By Sahlqvist’s theorem we have F |= ♦m+1p → ♦6mp, and therefore it
follows from xR∗y that xRiy for some i 6 m. If ϕ ∈ y in this case, then, by the
first part, ♦iϕ ∈ x, and therefore ♦6mϕ ∈ x.
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Sufficiency. Suppose that xR∗y is false. Then for every i 6 m it is false that xRiy.
By the first part, for every i 6 m there is a formula ϕi ∈ y such that ♦iϕi /∈ x.
Let ϕ = ϕ0 ∧ · · · ∧ ϕm. It is true that ϕ ∈ y and ♦iϕ /∈ x for all i 6 m. Then x
contains the formula ¬ϕ ∧ ¬♦ϕ ∧ · · · ∧ ¬♦mϕ. The latter means that ♦6mϕ /∈ x.
This completes the proof of the proposition. �

The following fact results immediately from the definitions.

Proposition 30. If L1 and L2 are consistent logics and L2 ⊆ L1, then the canon-
ical model of L1 is a generated submodel of the canonical model of L2 and consists
of all L2-maximal sets containing L1.

We denote by F 〈x〉 the frame (model) generated by a point x: F 〈x〉 = F �{y |
xR∗y}, where R is the relation in the frame (model).

The Kripke completeness and the fact that the extensions of S4 by the formu-
lae Bh are canonical have been well known for quite some time ([21], [22]). The
latter fact has the following generalization.

Theorem 4. If L is a pretransitive canonical logic, then the logic L[h] turns out
to be canonical for all h > 1.

Proof. Let Mh = (Wh, Rh, θh) denote the canonical model of the logic L[h] and let
M = (W,R, θ) be the canonical model of L.

By Propositions 27 and 30,

M1 vM2 vM3 v · · · vM,

where N vM means that N is a generated submodel of M .
Let F be the canonical frame of L.

Lemma 31. For all x

M, x |= L[h] ⇔ h(F, x) 6 h. (6)

Proof. If h(F, x) 6 h, then F 〈x〉 |= L[h] by Proposition 20. Hence, M〈x〉, x |= L[h].
By the generated submodel lemma, M,x |= L[h]. We carry out the proof of the
fact that M,x |= L[h] implies that h(F, x) 6 h by induction on the height h.

Let m = trans(L). Suppose that M,x |= L[1]. Then x ∈ W1 by Proposition 30.
Next, B1(m) is a Sahlqvist formula, and hence (W1, R1) |= B1(m), which means
that h(W1, R1) = 1 by Proposition 20. Thus, h(F, x) = 1.

Now suppose that M,x |= L[h+1]. When h(F, x) = 1, there is nothing to prove.
We assume that there is a y in the model Mh+1 such that [x] <R [y] (here [x]
stands for the cluster of a point x in the frame (W,R) or, equivalently, in the frame
(Wh+1, Rh+1)). Consider the model M〈y〉. We claim that M〈y〉 |= L[h]. For this, it
suffices to show that, at every point z of the model M〈y〉, all substitution instances
of the formula Bh(m) are true. Let ϕ = Bh(m)(ψ1, . . . , ψn). Since [x] <R [y] and
[y] 6R [z], it is false that [z] 6R [x]. Hence, it is false that zR∗x. By Proposition 29,
the last formula means that there is a formula ψ such that ψ ∈ x and ♦6mψ /∈ z.
The formula

α = ψ → �6m(♦6mψ ∨ ϕ)
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is a substitution instance of the formula Bh+1(m), which implies that M,x |= α.
Hence,

M,x |= �6m(♦6mψ ∨ ϕ).

This yields
M, z |= ♦6mψ ∨ ϕ.

Since M, z 6|= ♦6mψ, it follows that M, z |= ϕ, as was to be proved.
Thus, M〈y〉 |= L[h] and, by the induction hypothesis, h(F, y) 6 h. This implies

that h(F, x) 6 h+ 1 and completes the proof of the lemma. �

By Proposition 30, M,x |= L[h] ⇔ x ∈ Wh, which shows (by the lemma just
proved) that x ∈ Wh ⇔ h(F, x) 6 h. This means that the height of the frame
(Wh, Rh) does not exceed h. By Proposition 20, (Wh, Rh) |= L[h]. This proves the
theorem. �

Corollary 32. For n > m > 1 and h > 1 we have

Log G(m,h) = K + {♦m+1p→ ♦6mp, Bh(m)},

LogF(m,n, h) = K + {♦np→ ♦mp, Bh(n− 1)}.

Proof. By Sahlqvist’s theorem, the logics K + {♦m+1p→ ♦6mp} and K + {♦np→
♦mp} are canonical. By Theorem 4, their extensions by formulae of finite height
are Kripke complete. By Proposition 21, G(m,h) is the class of all frames of the
first logic and F(m,n, h) is the class of all frames of the second. �

For a finitely axiomatizable logic, its finite model property implies its decidability
(Harrop’s theorem).

Theorem 5. When n > m > 1 and h > 1, the logics of classes F(m,n, h) and
G(m,h) are decidable.

Proof. The logics of these classes are defined by a finite set of axioms, and have the
finite model property by Theorem 2. �

§ 6. Some corollaries

The finiteness of a frame is equivalent to the condition that its height, all levels
of its skeleton, and the number of points in each of its clusters are finite. Under
the condition that a given pretransitive (m,n)-frame has finite height, Theorem 1
and Lemma 13 enable one to bound the other parameters.

Corollary 33. Let n > m > 1. Then
1) LogF(m,n) has the finite model property if and only if it coincides with

LogF∗(m,n);
2) Log G(m) has the finite model property if and only if it coincides with

Log G∗(m).

What properties of the logics LogF∗(m,n) and Log G∗(m) can be found, along
with the established finite model property? In particular, do they have a finite
axiomatization, and are they decidable?
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The finite model property can also imply the decidability of a modal logic with-
out establishing its complete finite axiomatization: LogF is decidable if there is
a computable function f such that every formula ϕ satisfiable in F is satisfiable
in a frame in F whose size does not exceed f(l(ϕ)) and the membership problem
for the class F is decidable for any finite frame. The latter holds when, for example,
the class of frames is given by finitely many modal formulae or first-order sentences.
The condition on the size of the frame for the classes admitting f -bounded min-
imal filtrations is given by Proposition 5. We shall find these conditions for the
classes F(m,n, h) and G(m,h), n > m > 0, h > 1.

Proposition 34. Let F = (W,R) be a frame, let A be a partition of W , let B be
a partition of A and let C = {∪B | B ∈ B}. Then the frames (FA)B and FC are
isomorphic.

Proof. Obviously, C is a partition of W , and the map B 7→ ∪B is a bijection
between B and C.

By definition, FA = (A, RA), (FA)B = (B, (RA)B) and FC = (C, RC). Let us
verify that for every B1, B2 ∈ B we have B1(RA)BB2 ⇔ (∪B1)RC(∪B2):

B1(RA)B B2 ⇔ ∃A1 ∈ B1 ∃A2 ∈ B2 A1RAA2

⇔ ∃A1 ∈ B1 ∃A2 ∈ B2 (∃x1 ∈ A1 ∃x2 ∈ A2 x1Rx2)

⇔ ∃x1 ∈ ∪B1 ∃x2 ∈ ∪B2 x1Rx2

⇔ (∪B1)RC (∪B2).

This completes the proof of the proposition. �

Theorem 6. The classes F(m,n, h), F∗(m,n), G(m,h) and G∗(m) admit minimal
filtrations for all n > m > 1 and h > 1. Moreover, there are polynomials p(x, y, z)
and q(x, y) such that, for all n > m > 1 and h > 1, the class F(m,n, h) admits
f-bounded minimal filtrations with

f(x) = exph
2 (p(x, h, n−m)),

and the class G(m,h) admits f-bounded minimal filtrations with

f(x) = exph
2 (q(x, h)).

Proof. Let F ∈ F(m,n, h), let A0 be a finite partition of the frame F , and let A
be a refinement of A0 such that FA ∈ F(m,n, h) and the cardinality of the clusters
in FA are bounded by (n−m)|A0| (Lemma 13). Consider the partition

B0 =
{
{U ∈ A | U ⊆ V } | V ∈ A0

}
.

Obviously, |A0| = |B0|. Let B be a tuned finite refinement of B0 in the frame FA,
which exists by Theorem 1. By Propositions 7 and 21 we have (FA)B ∈ F(m,n, h).
By Proposition 34, the frame thus constructed is isomorphic to FC with C = {∪B |
B ∈ B}. It remains to note that C is a refinement of A0.



614 A. V. Kudinov and I. B. Shapirovsky

If x is the size of the original finite partition A0, then all the clusters in FA are
bounded by (n−m)x, and the size of the frame (FA)B thus constructed is bounded
by

exph
2

(
((n−m)x+ h+ 1)((n−m)x+ log2 x)

)
.

The argument for the classes G(m,h) and G∗(m) is carried out in a similar way
but using Lemma 18 instead of Lemma 13. The size of the frame thus constructed
is bounded by

exph
2

(
(x+ h+ 1)(x+ log2 x)

)
.

This completes the proof of the theorem. �

This theorem implies the decidability of the logics of classes F(m,n, h) and
G(m,h) for given n > m > 1 and h > 1 in Kalmár elementary time (the decision
algorithm is working in time bounded by a tower of exponentials).

Question 3. What is the complexity of the logics of classes F(m,n, h) and G(m,h)
for n > m > 2 and h > 1?

The theorem proved above gives no effective bound for the size of filtrations in
the classes F∗(m,n) and G∗(m), and the decidability problem for these logics is
open for n > m > 2. The axiomatics of these classes is also unknown.

Question 4. Are LogF∗(m,n) and Log G∗(m) decidable for n > m > 2?

Question 5. Are LogF∗(m,n) and Log G∗(m) finitely axiomatizable for n >
m > 2?

By Corollary 33, a negative answer to one of these questions will mean the
absence of the finite model property of the logics of classes F(m,n) or G(m).

It seems to us quite possible that for n > m > 2 the logics of the classes F∗(m,n)
and G∗(m) are at least not Kalmár elementary.

Let us summarize the known facts and open questions concerning the finite model
property, decidability, and finite axiomatizability for n > m > 1 and h > 1:

F(m,n, h), G(m,h) F∗(m,n), G∗(m) F(m,n), G(m)
FMP + + ?

Decidability + ? ?
FAx + ? +

We now give another consequence of the results obtained above.
The formulae of the language with k modalities are interpreted in structures

with k relations:

M,w |= ♦iϕ ⇔ ∃ v(wRiv and M,v |= ϕ).

Consider the language with two modalities. For a class F consisting of frames
with one relation we set

F± = {(W,R,R−1) | (W,R) ∈ F}.
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By recent results (cf. Theorem 2.7 of [28]), the filterability of a class F of frames
implies the finite model property not only of LogF but also of LogF±.

Corollary 35. Let n > m > 1 and h > 1. The logics of the classes

F(m,n, h)±, F∗(m,n)±, G(m,h)±, G∗(m)±

have the finite model property.

It is well known that if L is a canonical logic and F is the class of all frames
of L, then the logic LogF± is obtained from L by adding the axioms p → �1♦2p
and p→ �2♦1p.

Corollary 36. For n > m > 1 and h > 1 the logics of the classes F(m,n, h)±

and G(m,h)± are decidable.

Despite the theorems on the finite model property proved above, the logics of
pretransitive frames of finite height are significantly more complicated than the
corresponding extensions of the logic S4 of preorders. For example, all the logics
S4+{Bh} are locally tabular, and the logic S4+{B1}=S5 is pretabular. However,
neither local tabularity nor pretabularity hold even for Log G(2, 1) because this logic
has Kripke incomplete extensions ([29], [30]). The same holds for all the logics
LogF(m,n, h) and Log G(m,h), n > m > 2, h > 1, because they are included
in Log G(2, 1).

The authors express their gratitude to the referee for valuable remarks.
Earlier, in [24], the authors considered logics of pretransitive frames in which

the relation R∗ is universal (‘pretransitive analogues of S5’), that is, in fact, logics
of pretransitive frames of height 1. The idea of considering the case of logics of
arbitrary finite height was suggested to the authors by V. B. Shehtman, and the
authors express their gratitude to him for this suggestion.
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