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Abstract
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1 Introduction

The subject of this paper is between three different themes: temporal logic of relativity, interval
temporal logic, and spatial modal logic. Originaly these themes were independent, but nowadays
there is growing influence between them. A detailed historical overview of all related work might be
an interesting, but rather difficult task. So let us give only someintroductory remarks and references.

Relativistic temporal logic was first mentioned in Prior’'s [22] and first axiomatized in [12]. Not
so much isknown in thisfield so far, in comparison to the first-order approach to special and general
relativity (for the latter, see [2] and references therein).

Theideaof interval semantics (‘apossibleworldisatime-interval’) istraced back to Jean Buridan
(24th century), cf. [21]. In amodern setting this ideafirst appeared in linguistic semantics [3], next
in temporal logic [16, 23, 20] and finally in computer science logic [15]; see [29, 13] for further
references. A simple observation that intervals on the line correspond to points on the half-plane,
putsinterval logics into the context of two-dimensional modal logics[30, 18].

Basic relations between intervals on the line were identified in [1]: ‘before’, ‘meets’, ‘overlaps
etc. One can consider modal operators corresponding to these relations, but modal logics involving
them all happen to be undecidable [15]. If only some of these modalities are used, alogic may be
still decidable. In general, the landscape of interval logics remains yet unclear.

The third kind of logic considered in this paper are modal logics of regions in space. The idea
that a region can be a better basic notion in axiomatic geometry than a point, is rather old [8, 31];
essential work has been done in first-order ‘pointless’ theories of space [14, 11]. This approach is
widely used in qualitative spatial reasoning [7]. Now modal logics are also applied to this field, but
mainly in topological setting (cf. [4]; [9, Ch. 16]). Quite recently asimple analogy between regions
and intervals led to ‘modal logics of regions’ [17], which are discussed below as well.

Informally the main unifying idea of this paper is that pointsin (n + 1)-spacetime correspond
to regions in n-space via cones; so intervals as one-dimensional regions correspond to points in
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Minkowski 2-space.

The plan of the paper is as follows. Section 2 contains very standard material and notation.
Section 3 gives an outline of completeness results in relativistic modal logic. Section 4 shows how
these results can be interpreted for logics of balls and intervals, and Section 5 considers modal
logics of other regions. In Section 6 we discuss properties of the modality ‘after’ in Minkowski
spacetime; exact axiomatizations are still unknown in this case. Section 7 shows that in this area
some natural modal logics may be not finitely axiomatizable. In Section 8 we quote some earlier
results on complexity and finite model property. Section 9 discusses some results on intuitionistic
logic and its extensions, and Section 10 puts questions for further study.

2 Preliminaries

L et us begin with some set-theoretic and geometric notation.
Foraset V C R™, IV denotesitsinterior, CV denotes its closure.
UeV:=U CIV (U isanon-tangentia proper part of V),
UcV:=UCVadU #V.
Pointsin R™ aredenoted by X,Y, Z, X, ...
We use different projections R” — R"~}, R" — R; for X = (1,...,2,) let
(X)) := (za,...,2,), pri(X) := a4,
$(X) = (21,...,2n_1); t(X) 1= pr(X).
Also let
R} :={X € R" | prp(X) > 0},
R” :={X e R" | pr,(X) <0},
R: :={X € R" | pr,(X) =0} (=R ! x {0}).
|X —Y|| denotesthe (Euclidean) distance between X = (xq,...,2,)adY = (y1,...,Yn), i.€

X =Y = /> (zi—y:)* Forr >0

=1
B(U,r):={X | forsomeY € U | X - Y| <r}

is the closed r-neighbourhood of U C R"; B(X,r) := B({X},r) isthe closed ball with centre X
of radius r.

PV = {p1,p2, ...} denotesthe countable set of propositional variables; as usual, modal formulas
are built from PV, classical connectives, and modal (unary) connectives. n-formulas are built using
only varigblesfromthe set PV [n := {p1,...,pn}-

In this paper we consider normal modal propositional logics (as sets of formulas). For a modal
logic A and a modal formula A, the notation A - A means A € A; A + A denotes the smallest
modal logic containing A U {A}. A[n denotesthe set of all n-formulasin amodal logic A.

Recall that a (Kripke) frameisapair (W, R), where W isanon-empty set, R isabinary relation
on W. Thenotation z € F meansx € W.

A (Kripke) model is a Kripke frame with avaluation: M = (W, R.,0),0 : PV — 2W. The
sign F denotes the truth at a point of a Kripke model and also the validity in a Kripke frame. L(F)
denotes the set of all formulasthat arevalid in F'. F' ~,, G if L(F)[n = L(G)[n.

The notation f : F} — F» meansthat f isap-morphism from F; onto £y, and F;, — F, means
that f : F; — F; for some f. Recall that F; — F5 impliesL(F;) C L(F») (P-morphism lemma).

As usual, for a relation R we denote R(z) := {y | zRy}. R* denotes the transitive clo-
sure of R; Idy denotes the equaity relation on W. We dso put W* := {z} U R*(z), F* :=
(W=, RN (W?* x W*)) isthe subframe of F' generated by «; recall that L(F') C L(F*).
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A frame F = (W, R) (and the relation R) is caled pretransitive if for some I, R'T! C
Idw URUR?...UR'andthus R* C Idyw URU R?...UR!.

Forarelaion R C W x W let R* := RUR~'UIdy (R-comparability), —R := (W x W) — R,
R™ .= —(R*) (R-incomparability).

Let usrecall some first-order properties of arelation R:

seriality Vx3y xRy;

McKinsey property Vady € R(x) R(y) = {y};

irreflexive McKinsey property  Va(R(z) # @ — 3y € R(x) R(y) = 9);

density VaVy3z(xRy — xRz A zRy);

2-density VaVy1 Yy 3z(xRy1 A xRys — xRz A zRy1 A zRys);
confluence, or VaVy1 Vyo3z(xRy1 A Rys — y1 Rz A yaRz).

Church—Rosser property

Some modal axioms and the corresponding properties of frames:

A4 :=O0p — Op trangitivity,

AT :=p— Cp reflexivity,

AD =0T seriality,

Al :=00p — <Op McKinsey property (for transitive frames),
A1Y =0T — o0OL irreflexive McKinsey property,

Ad = Ady :=Op — OOp density,

Ady := Opp A Opy — O(Opr AOpe)  2-density,

A2:=<0p — OOp confluence.

We use specific notation for some modal logics:

K4:=K+ A4, D4:=K4+ AD, S4:=K4 + AT,
OI := D4 + Ad,, CI:=K4+ Ad, + Al°.

ForalogicAlet A.l:= A+ Al, A.2:= A + A2

3 Causal and chronological modalities in Minkowski spacetime

It is well known that relativistic time is branching, due to the finiteness of the speed of light. An
event (apoint in a spacetime) X is earlier than an event Y if asignal can be sent from X to Y. So
future events may be incomparable if they are too distant in space. Bimodal temporal |ogics of these
branching structures are still unknown, but there are some results on monomodal logics.

Recall that Minkowski metricsin R™, n > 2 is obtained from the following quadratic form:

u(X) = H(X)? = [[s(X)]*.

Chronological accessibility < and causal accessibility < in Minkowski spacetime are defined as
follows:

X<Yiff (X -Y)>0&tY) > ¢(X)iff t(YV) — t(X)

> |ls(Y) = s(X)|l,
X LY iff u(X —Y) > 0& t(Y) > ¢(X) iff t(Y) — t(X) > ||s(Y) —

Y
(¥Y) = s(X)]-

In the simplest cases modal logics of frames with these accessibility relations are already known.
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FIGURE 1.

THEOREM 3.1 ([12, 27])
L(R™ =) =S4.2forany n > 2.

THEOREM 3.2 ([26])
L(R™, <) = OL2forany n > 2.

THEOREM 3.3 ([27])
Let U be an open domain in R? bounded by a closed simple differentiable curve. Then
L(U,<) = S4,L(CU, <) = S4.1.

THEOREM 3.4 ([26])
Let U be an open domain in R? bounded by a closed smooth curve. Then L(U, <) = OL.

Apparently Theorem 3.4 can be extended to the same type of domains asin Theorem 3.3, and similar
results can be proved for higher dimensions.

For frames F = (CU, <), where U C R? isan open domain with asmooth boundary, the situation
is more delicate. In [25] it is proved that L(F) € CI. On the other hand, F = A4, F £ A1°; so
F E Ad, impliesL(F') = CI. But 2-density does not always hold for frames of thiskind, e.g. for
the frame on Figure 1(a).

Nevertheless for convex domains we have:

THEOREM 3.5
[25] Let U be an open convex domain in R? bounded by a closed smooth curve. Then L(CU, <) =
CI.

On the other hand, note that the frame on Figure 1(b) is not convex, but 2-dense, so its logic till
equals CI.
Let =:==<"1 ~:=<"1 Theabove resultsimply the following

LEMMA 3.6

For n > 2 we have:

L(R™,») =L(IR",>) = S4.2,

L(R™, <) =541, L(IR", <) = S4;

(R",>) = L(IR", >) = OL.2,
(R™, <) = CI, L(IR", <) = OL.

oy
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Logics of polygons on Minkowski plane are also studied in [27, 26, 25]. In particular, the follow-
ing holds.
THEOREM 3.7
For a convex open polygon X C RR? there may be two options:
(1) L(X,x)=54,L(CX,=<) =84.1,L(X, <) = Ol
Q) L(X,x)=S4.2,L(CX,<)=S4.12,L(X,<) = OL2.

L et usalso mention the correl ation between product logics[10, 9] and relativistic logics. Consider
the product frame
(R,<)?:= (R, <) x (R, <) := (R? <1, <),
where
($7y) <1 (xlvy/) sr<d &y=y;
(x,y) <2 (xlay/) sr=1&y<y.
Relativistic time can be interpreted within this frame. In fact, the frames (R?,<; o <5) and
(R?%, <) areisomorphic (by rotation). So the logic
L(R?, <) = Ol is naturally embedded into L((RR, <)?).
COROLLARY 3.8
OL2 = {A| (R,<)*F p(A)},
where ¢ translates O as O; O, and does not affect other connectives.

Note that the whole bimodal logic L((R, <)?) isII}-complete, and therefore not recursively ax-
iomatizable [9].
Similarly we have

COROLLARY 3.9
S4.2 = {A| (R,<)? F p(A)}, where ¢ isthe same asin Corollary 3.8.

4 Balls and intervals

In this section we interpret the previous results in terms of balls. This can be done due to a natural
correspondence between points in Minkowski (n + 1)-half-space and n-balls.
Let
B, ={B(X,r)| X e R",r >0}, B, :={B(X,r) | X € R",r > 0}.

There is a standard bijection ¥ : R™ ™! — B such that
U(X):=s(= (X)NRyH
(Figure 2(a)). The other way round, for b = B(X,r) € B, wehave U~!(b) = (X, —r) € R™",

DEFINITION 4.1
For arelation R on B, itslower-correspondent isthe relation S on R™** such that ¥ is an isomor-

phism between (8%, R) and (R™*, S); notation: R «— S.
LEMMA 4.2
> L <5 L 4 c X re L
Proof. Infact, for ballsb; = B(X1,71), by = B(X2,72) we have
by Chyiffro —r > | X7 — Xo iff (Xo, —12) 2 (X1, —11)

(Figure 2(b)), thus C Lo o X < Twoother claims are proved in asimilar way. [ |
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R = s(R}™Y)

FIGURE 2.

From Lemmeas 3.6, 4.2 we obtain

THEOREM 4.3
Completeness results for logics of n-dimensional balls, n > 1 are presented in Table 1.

TABLE 1. Logicsof ballsin R”

[ [5[o[elc]
B, ||OI| S4 | OI.2| S4.2
B, |[CI|S41|OI2]S42

Forthecasen = 1, By = Z, B = Z* arethe sets of al strict and non-strict closed intervals on
therea line:
7= {[a,b] | a < b}, T* = {[a,t] | a < b}.

So Theorem 4.3 a so describes logics of intervals with strict and non-strict subinterval relations:

[a1,D1] C [ag, ba] iff a2 < a1 & by < bo,
[al,bl] c [ag,bg} iff as < a1 & by < bs.

5 Regions and bricks in R”

There are different options for spatial analogues of intervals; the corresponding modal logics are
often undecidable (see Section 8 below). But in the simplest cases we obtain the same modal logics
asin the previous section.

Recall that a closed set V is caled regular if CIV = V. Let CN,, (respectively, CV,,) be the
set of all non-empty compact regular sets with the connected (respectively, convex) interior in R™,
and let CN, (CV}) beits extension by all singletons. Sets of all these types are called regions.
n-dimensional bricks are a special type of regions:

Ro={[Juiluet} R;={]JulueT}
=1 =1
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Trividly,CN; =CVy =Ry =ZandCN] =CV] =R} =T*.

THEOREM 5.1
Table 2 contains completeness results for some logics of regions and bricks, n > 1.

TABLE 2. Logics of regions and bricks

5] o | € | C
CV,.CN,,R, | OL| S4 | OL2 |S4.2
CV*,CN* R’ |[CI|S41]|OL2|S42

PROOF. [Soundness.] It is clear that al four relations are transitive; C, D are reflexive, and € is
serial. Itisaso clear that 5 is seria if singletons are not involved. To check the confluence of
C, €, notethat the union of two compact setsis compact, and every compact set can be covered by
abrick (whichisinCV7,, CN, aswell).

n?

To show that (R,,,>) E Adg, consider bricksr = [[u, r = H u, r o= H u/, where
i=1 =1 i=1

1) 71

L — 1=
u;,ul,uf € 7, and supposer  r', r > r”. Since (Z,) is 2-dense, for some vy,...,V, we
n
have: u;  v;  U; v;  u/. Thenfors:= [] v;, weobtain: r s> r'; s> r’. Therefore

i=1

(Rn,2) E Ads.

Since (R}, ) contains singletons, which are dead ends, it follows that (R, ) F A1°. Thus
L(R;,>) 2 CL

Let us prove the 2-density of € for CN,, and CV,,. Letv,u;,uy € CN,,V € Uj, V € Us.
Then v € u; N Uy, and so for some r > 0 we have B(v,r) € u; NUy. Sincev € B(v,r) and
B(v,r) € CN,, itfollowsthat (CN,,,3) F Ady. If v € CV,, then B(v,r) € CV,, aswell, s0
(CV,,3) F Ads.

Similarly one can prove the 2-density of > for CN,, andCV,.

[Completeness.] Let d(V') be the direct image of aregion V' C R™ under pry. Since continuous
maps preserve compactness and connectedness, it followsthat d(V) C R is compact and connected,
i.e. d(V) € Z*. One can essily see that d(V') € Z whenever V' € CN,, and moreover, for any
W e{CN,,CV,,R.}, Re {3,2,€,C},

d: (W,R) > (Z,R), d: W* ,R) - (I*,R).

Hence by Theorem 4.3, we obtain completeness. [ |

6 Remarks on ‘after’

Monomodal logics based on the relations C, & and their spacetime analogues <, =, do not alow
us either to determine the dimension of space, or to distinguish balls from bricks. But R. Goldblatt
noticed that the modality ‘after’ might be more expressive. It correspondsto relation «, the simplest
irreflexive version of <, i.e. for X, Y € R", n > 2,

XaY =X =<YadX #Y.
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FIGURE 3.

It is easy to see that « is transitive, dense, serial, and confluent, but not 2-dense. (To disprove the
2-density for (R?, o), take the points (0,0), (—1,1), (1,1).) But some subtler modally definable
properties still hold for a.

First consider the formulas

Adng = /\ <>pi — \/ <>(<>pL A <>p])

1<i<n 1<i<j<n
(asusua, weassumethat A A; =T, V A; = 1). Theseare Sahlqvist formulas; the first-order
1S 1€ED
correspondent of Ad,, o is

VaVzy ...V, ( /\ rRx; — \/ Jy(xRy N yRx; A yRa:j)) .

1<i<n 1<i<j<n
LEMMA 6.1
(1) K+ Adn,? F Adn-‘,—l,Qv
(2 K+ Ad,, 2 - Ad,.
PrROOF. (1) isamost obvious. To show (2), substitute p for every p; in Ad,, . [ |
LEMMA 6.2 ([12])
(D) (R?, @) F Ads .
(2) (R, o) ¥ Ad,, o for any n.

PROOF. (1) Suppose X a X7, XaXs, but thereisno Y such that XaY, YaX;, YaXs. It follows
that X, X, are on two different sides of the light-cone < (X), see Figure 3(a). But then X X3
implies that either the corresponding Y existsfor X; and X3, or X3 and X5 are on the same side of
the cone (and so we can take Y on this side as well).

(2) Take different points X1, ..., X,, onthecircle

m2+y2:1
z=1.



Modal Logics of Regions and Minkowski Spacetime 567

Every X; isseen from O = (0,0, 0) (Figure 3(b)), but O is the maximal point seeing two distinct
X;s. Thus Ad,, » fails. [ |

Now let us consider another extra axiom

Aaf = O(O(pr A —p2 AD=p2) AO(p2 A —p1 AD=pq)) AOg —
O(Op1 AOq) V O(Opa A Oq),

and let
LO[() = D42 —+ Ad + Aaf

This axiom corresponds to the following first-order condition:

VaVyVy Yys[(x Ry A yRy1 A yRya A y1 Ry, —
Vz3t(xRz — xRt AtRz A (tRyy V tRys))].

PROPOSITION 6.3
(D) L(R?, o) C L(R?, )
(2) Loy € L(R™* ! o) C L(R", ) forn > 3

PrROOF. We have 7 : (R"*! a) — (R",a), so L(R"*! a) C L(R" «). By Lemma 6.2,
L(R?, a) # L(R?, ).

It remainsto show the validity of Aaf in (R™, «). Let usexplain thisfor the casen = 3, the gen-
eral caseisquitesimilar — just replace 2-diskswith (n—1)-disks. So suppose XaY, YaYy, YaYs,
XaZ and Y1, Y, are a-incomparable. Take the cones from these points and consider their section
by a sufficiently high plane. The section of every cone is a disk on this plane; let us denote these
disks by the same letters X, Y, ... (see Figure 4). Now we haveto find adisk T C X containing Z
and either Yy or 5. If Y € X or Z € X, then such a covering disk exists aready for Z and Y.
Otherwise, both Y, Z are internally tangent to X . Next, if Y7 isalso internally tangent to X, then
Y5 isnot (since Yy, Y; are incomparable); then a covering disk 7" existsfor Y5 and Z. [ |

Similarly we obtain
PROPOSITION 6.4
(1) L(By,C) D L(By,C) D L(Bs,C) D ... 2 Lap.
(2 L(Ry,C) =L(R,, Q) iff m =n.
(3) L(B, C) =L(R,,C)iff m=n=1.

PROOF.
(1) Trivialy, L(R™, o) = L(R™, 1) for any n > 2.

Since ¢ - o~ !, by Proposition 6.3, we obtain (1).
(2) Let us show that (R,,, c) E Ad2n+1 5. Consider bricksr, ry,...,ro,1 suchthat r C r; for any

i, and assumethat r = H Vj, I = H Vi, wherev;,v;; € 7. Thenforany i, j (1 <i < 2n+1,
1 1

1<j<n)v; C vij,énd for any ijthere exists j; such that v;, C v;;,. By pigeonhole principle,
at least three of these numbers j; coincide. So for some j and for some distinct i, io, i3 We
have v; C v;;, V; C Vi, V; C V4 . Therefore, since (Z,C) F Adsp, it follows that
(R, C) E Ad2n+172.

On the other hand, a straightforward argument shows that (R,,, C) # Aday 2, SO by Lemma
6.1, (R,,C) ¥ Adjo forany I < 2n. Thusm < n implies (R, C) ¥ Adam+1,2, While
(Rm, C) E Adgm_i_l,g.
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FIGURE 4.

(3) Sincec e by Lemma6.2wehave (B,, C) ¥ Ad; » forany I; thusby (1), (B,,, C) ¥ Ady o
forn > 2.

However, we do not know exact axiomatizations for logics of frames considered in this section;
the problem of their decidability is also open.

7 Non-finitely axiomatizable logics

It seems that in many cases relativistic modal logics are not finitely axiomatizable; some examples
are presented in this section. Our arguments are based on the following simple fact.

LEMMA 7.1
Consider alogic A and suppose that for every n there exist frames G,,, G/, such that G,, ~,, G/,

A C L(G,), A € L(G,,). Then A is not finitely axiomatizable, and moreover, not axiomatizable
by any set of n-formulas with n fixed.

PROOF. Almost trivial. Consider asetT" C A[n. Then G,, E T, and G,, ~,, G, impliesG!, E T.
Since A Z L(G),), weobtain A # K+T.

For every finite rooted pretransitive frame F' one can construct an analogue of Jankov—Fine frame
formula X (F) (cf. [5]), with the following property:

LEMMA 7.2
Let F' be afiniterooted frame, G an pretransitive frame. Then

L(G) CL(F) iff G ¥ X(F) iff forsomew € G, G* — F.
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FIGURE 5.

Now let us define frames K, K., Ly, L,,,, for m > 1 (Figure 5):

W = {w17 cee 7wm}7 K, = (Wm77é), K;n = (I/Vma7é U{(wmvwm)});
Vi = {w1,v1, ..., Wn, U by R i= —{(wi, v3), (vi, i) b <i<m,
Lm = (VmaRm)v L;n = (VmaRm U {(wnuvm)a (Um;wm)})

So K, isan ‘irreflexive m-clique'.

LEMMA 7.3

(1) Kani1 ~n Kon;

(2) Lo2nyq ~p Ly,

PROOF. For worlds u, v in a certain Kripke model M, wewriteuw =¢ v if Vi < n(M,u F p; &
M, v E p;). Itisclear that the equivalence relation = has at most 2" classes.

(1) Consider an arbitrary model M over Kyn 1. Then for somedistinct a, b € M we have: a =g b.
By symmetry, we may assume that a = wan, b = wany;. NOw we merge these points into a
single reflexive point, and obtain amodel M’ over the frame KJ,..

By induction on the length of an n-formula A it follows that

forany i < 2™ M,w; F Aiff M/ w; E A;
M, Wan E A iff Mva"Jrl E Aiff M/,'LUQn EA.

Hence Kon 1 ~yp Kjn.

(2) Consider amodel M over L,,.1, where m = 22", There exist at most 22" pairs of =(-classes
in M, so for some distinct 4, j we have w; = w; and v; =¢ v;. Without any loss of generality
wemay assumethat i = m, j = m+ 1. Then we can identify w,,, with w,, 1, and also v,,, with
Um+1, and obtain amodel M’ over the frame L/, (Figure 6).

By induction we obtain that for any n-formula A, for any i < m
M,wi E A iff M’,wi E A,
M,Ui EAiff M/,’Ui E A7
M, wp, E Aiff M w11 FAIff M w, E A,
M, vy, EAIff M,v,.1 EAIff M v, E A.
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Um
Lm—l—l
Um+1
v
L’m W, o o Um,
FIGURE 6.
Hence the claim follows. [ |

Now consider the relations <* and <™. Note that for distinct X, Y € R”

X <* Y iff thevector (X — Y) istimelike, i.e. u(X —Y) > 0;
X <™V iff thevector (X —Y) isspacelike i.e. u(X —Y) < 0.

THEOREM 7.4
For R € {=<*, <> <% <>} the logic L(R", R), n > 2 is not finitely axiomatizable (and not
axiomatizable in finitely many variables).

PROOF.
() Let R € {=™, <™}, Itissufficient to show that for any I, X € R™:
1) (R", R) - K};
@ (R, R)X 4 K.

In fact, let A = L(R™, R). Then (1) implies A C L(K]), while (2) implies A Z L(K;), by
Lemma 7.2. Hence by Lemmas 7.3 and 7.1 it follows that A is not axiomatizable in finitely many
variables.

To prove (1), let ustake distinct parallel straight lines @4, ..., Q;_1 of timelike direction, and let
usdefineamap f : R — K] asfollows:

L w; if X e Qi7
FX) = { w; otherwise.
Then f : (R",R) — K| for R € {=<™,<™}. Infact, every line @); contains points that are
<™-related to X, whenever X ¢ Q.

For the proof of (2), note that the (R™, <) contains arbitrarily large antichains (containing the
given X). Thus (R", R)X contains asubframeisomorphicto K 1, which cannot be mapped mono-
tonically onto K.

(1) Now let R € {=*, <% }. Again by Lemma 7.3, it is sufficient to show
D (R™, R) - L],
( (R", R)* £ L.

To check (1), wetakedifferent hyperplanes P, ..., P, pardlel toRj: P, = {X e R" | ¢(X) =

i}. Let ussplit each P, into two densesubsets, P/ and P/’. Let U := R" — (P U...UP,_4), Uy :=
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UNRY. Thenfor X € R™ we put:

V; if X S H,
w; if X € P/,
9(X) =1 it X e,
wy otherwise.

It followsthat g : (R, R) — L}; infact, if X ¢ P;, then the geometric cone <* (X)) intersects P/
and P/.

To prove (2), note that the frame (R™, <) isdirected, and thusfor any X3, ..., X thereexists Y
such that X, RY,..., X, RY. This property transfers to p-morphic images, so if (R", R)X — L;,
then L; should contain a point related to all other points, which is a contradiction. [ |

Similarly one can prove the following

THEOREM 7.5

Foranyn > 1,
W e {B,,R,,CN,,CV,,B:,R:,CN; ,CV,},
R {e*, &=, Cc*, ™,

thelogic L(W, R) is not finitely axiomatizable.

8 Finite model property and complexity

Thelogics S4, S4.1, S4.2 are well-known; they all have the finite model property (FMP) and are
PSPACE-complete, cf. [6, 5, 24].

The FMP for thelogics OI, OI.2 isproved in[26]; asimilar method is used for CI in [25].

The complexity of 2-dense logics was first studied in [24], where the proof of PSPACE-
completeness for OI, OI.2 was given. A dight modification of this proof yields the PSPACE-
completeness for CI.

Therefore the simplest regional, interval and spacetime logics enjoy the FMP and are PSPACE-
complete. But more expressive systems turn out to be undecidable [15, 17]. Let us recall some of
these results and give their analogues for relativistic logics.

Recall that RCC5-relations between regionsare {=, C, D, (), =<}, where

viu:= IvNnIu=# g & v C™ u (meeting),
VU :=vNnu=g (partial overlapping).

Consider spacetime correspondents of (j, =; viz. for X, X, € R"" we put:

X; () Xo:=X; =™ Xy andforsomeY ¢ R"™ X} <V and X, <,
X; <’ Xy := thereisnoY € R{™ suchthat X; <Y and X, < Y.

One can seethat () & 0, = L = sowe obtain

PrROPOSITION 8.1
L(R11+13 Oé, a717 Q/7 X/) = L(B:;,? C? :)7 Q? X)’
L(IR" o, a1, ,=') = L(B,, C, D, 0, =).
In [17] it was proved that every logic L(R,, C,D,(),=<) is undecidable. Since R, = By, by
Proposition 8.1 we obtain
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PROPOSITION 8.2
Thelogic L(IR? , o, o=, (, <) isundecidable.

9 Remarks on intuitionistic logic

It iswell known that every intuitionistic formula A can be transformed into a modal formulaT'(A)
viaGodel-Tarski trandlation (putting (I in front of every subformula@). Thus every (consistent) modal
logic A above S4 corresponds to an intermediate logic s(A) := {A | T(A) € A} (the superintu-
itionistic fragment of A). For aKripkeframe F' = (W, R) with R transitive and reflexive, we obtain
the intermediate logic of F: IL(F) := s(L(F)).

It is also well known that the intuitionistic logic H is s(S4) = s(S4.1), and s(S4.2) =
s(S4.2.1) = H + —p vV ——p (thelogic of the weak excluded middle denoted by KC).

So we have the following consequence from Sections 3, 4, and 5.

COROLLARY 9.1

(1) IL(R™, %) = KC forany n > 2.

(2) Let U be an open domain in R? bounded by a closed simple differentiable curve. Then
IL(U, <) = IL(CU, <x) = H.

(3) For aconvex open polygon X C R?, IL(X, <) = IL(CX, <) iseither H or KC.

4) For W € {B,,R,,CN,,CV,,B,R:,CN; CV,} wehaveIL(W,2) = H, IL(W,C) =
KC.

The frames mentioned in (4) also admit interpretation using Medvedev's notion of ‘information
types [19]. Let usbriefly describe it in an equivalent Kripke-style form.

A region can beregarded as ‘information’” about some unknown point in thisregion (in particular,
an interval gives information about a real number). The inclusion u C v means that information
u ‘refines’ v. The truth value of an intuitionistic proposition depends on the information we have;
ul- A (u‘forces A) if uissufficient for stating A. Of course, if u O vand u I- A, it should be
that v IF A. Given truth values of basic propositions (an intuitionistic valuation), we can find truth
values of al intuitionistic formulas according to the standard rules:
ulk AABiffulr Aandu I+ B;
ulk Av Biffulk Aorul- B;
ulk —Aiff vIf Aforany v C u;
ulk A — Biff vIF Aimpliesv I B forany v C u.

Asusual, aformula A iscalled validin (W, D) (notation: (I, D) I+ A) if every information forces
A under any intuitionistic valuation. A standard argument shows that the validity of A isequivalent
to the validity of the modal formula 7'(A4) in the corresponding Kripke frame. This implies the
following reformulation of Corollary 9.1 (4):

PrROPOSITION 9.2
For W € {B,,Rn,CN,,,CV,,B: R:,CN,

n’

CV:}wehave (W,D) IF Aiff HF A.

In [19] validity is defined in terms of ‘information types’, which is equivalent to taking the Heyt-
ing algebra of the corresponding Kripke frame. The frame in [19] is different: ‘informations’ are
arbitrary non-empty sets of natural numbers. Then the intuitionistic logic is incomplete, and the
corresponding set of valid formulas seems to be rather complex (recursively enumerable, but till
unknown). Some related logics are studied in [28]; they also do not look simple. However, the
above proposition shows that in principle, Medvedev'sideais correct: completeness theorem holds
if information istreated as aregion of acertain kind (or a cone, in the relativistic approach).
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10 Questions

As we have seen, in general, there are many natural relations between regions; only few of them
have been studied from the modal logic viewpoint. So many questionsin thisfield are open, and let
us formulate some of them.

1. Do there exist natural examples of decidable, but complex logics of regions?

Note that now there is a big gap between undecidable logics (Proposition 8.2) and decidable
logics, which are al in PSPACE.

2. Do there exist natural examples of decidable logics of regions without the FMP?

3. (a) Do there exist *dimension axioms' in polymodal logics of regions?

(b) Do ‘dimension axioms exist for Minkowski spaces in the language with the ‘after’ modality.

4. (a) Find modal properties of ‘light-accessibility’ in Minkowski space. XY := u(X —Y) =
0&t(Y) > t(X).

(b) Find modal properties of the ‘inner contact’ relation between balls.

5. (a) Do there exist decidable temporal logics of the forms L(R"™, <, =), L(B,,,C, D) etc. ?

(b) Do there exist finitely axiomatizable logics of this kind?

Note that L(R", <*) from Theorem 7.4 is the ‘ omnitemporal fragment’ of L(R", <, =) corre-
sponding to the modality ‘always (A := [0; A A T, A A A. Although Theorem 7.4 does not imply
the non-finite axiomatazibility of this temporal logic, but may give some hints.

6. Find properties of natural additional intuitionistic connectivesin regional or relativistic logics.

For example thereis the * difference modality’ A with the following semantics:

ul- AAiff v(vIF A& v < u);
so AAistrueif A istrue at some ‘distant place’.
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