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1. INTRODUCTION

One of intensively developing fields in theoretical computer science is the study of the so-called
spatial logics, used for the description of geometrical and topological relations and operations, and in
particular, investigation of semantic and algorithmic properties of these logics. This development is
due to, one the one hand, applied problems (such as pattern recognition or design of geoinformation
systems) and on the other hand, issues of axiomatization of various areas of mathematics and
mathematical physics (for instance, topology and theory of relativity).

In particular, logical calculi that axiomatize relations between regions (i.e., sets of certain type in
a topological space) are actively being investigated nowadays. For these purposes, various systems
have been proposed in classical first-order languages, as well as in languages of modal logic.

As examples of relations between regions, one may consider ⊆ (inclusion), � (compact inclusion:
A � B ⇔ CA ⊆ IB, where I and C are the interior and the closure operators, respectively),
their converse ⊇ and �, � (disconnectedness: A � B ⇔ A ∩ B = ∅), � (partial overlapping :
A � B ⇔ IA ∩ IB �= ∅ ∧ A � B ∧ B � A), etc.

If we consider a set of regions with relations as a Kripke-frame, then the question on its modal
logic arises. Recently, it was shown in [1] that modal logics of regions with several relations can
be undecidable or even not recursively enumerable (in [1], among others, modal logics of regular
sets ordered by the eight Egenhofer-Franzosa relations RCC-8 [2,3] were considered). In [4] it was
shown that there is a number of monomodal logics of regions which are not finitely axiomatiz-
able. This leads to the problem to find expressive modal systems with “good” properties (finite
axiomatizability, finite approximability, appropriate computational complexity).

In this paper we consider frames of the form (W, R), where R is one of the relations ⊆, �, ⊇, or
� and W is a nonempty set of n-regions; by an n-region we mean the closure of a domain in R

n.
Logics of these frames were described in [4] for the cases where W consists of all (convex) n-regions,
n-dimensional balls, or bricks. In this paper we generalize this result: we define a special class of
saturated sets of regions and describe the logics of (W, R) for any saturated W; in particular, any
nonempty set of convex regions closed under homotheties is saturated (Theorems 2 and 3). We also
axiomatize logics of some bimodal frames with the additional universal relation W×W (Theorem 5).
All described logics are finitely axiomatizable, finitely approximable, and PSPACE-complete.

1 Supported in part by the Russian Foundation for Basic Research, project no. 06-01-72555, and RFBR-
NWO, project no. 047.011.2004.04.

255



256 SHAPIROVSKY

2. PRELIMINARIES

Let us recall some basic notions from the theory of modal logic.

Definition 1. The set of n-modal formulas FM (♦1, . . . ,♦n) is defined via a countable set of
propositional variables PV = {p1, p2, . . .}, propositional constant ⊥ (false), binary connective →,
and unary connectives ♦1, . . . ,♦n (possibility operators) as follows:

• ⊥, p1, p2, . . . are formulas;
• If A,B are formulas, then (A → B) is a formula;
• If A is a formula, then ♦1A, . . . ,♦nA are formulas.

The connectives ¬, ∧, ∨, and 
 are defined in the standard way; in particular, ¬A := A → ⊥
and 
 := ⊥ → ⊥. Also, we put

�iA := ¬♦i¬A (necessity operators).

Definition 2. A (normal) n-modal logic is a set of n-modal formulas L ⊆ FM (♦1, . . . ,♦n) such
that

• L contains all classical tautologies,
• L contains the formulas ¬♦i⊥, i = 1, . . . , n,
• L contains the formulas ♦i(p1 ∨ p2) → ♦ip1 ∨ ♦ip2, i = 1, . . . , n,
• L is closed under the modus ponens rule, uniform substitution rule, and monotonicity rules Moni,

i = 1, . . . , n:
Moni : if A → B ∈ L, then ♦iA → ♦iB ∈ L.

Definition 3. An n-modal Kripke frame (or simply an n-frame) F is a tuple (W,R1, . . . , Rn),
where W is a nonempty set and R1, . . . , Rn ⊆ W × W . A valuation on F is a map

θ : PV → P(W ),

where P(W ) is the power-set of W . A Kripke model M over a frame F is a pair (F, θ), where θ is
a valuation on F .

The trues of a modal formula A in a model M at a point x (notation: M,x � A) is defined as
follows:

M,x �� ⊥,

M, x � p ⇔ x ∈ θ(p),
M, x � A → B ⇔ M,x �� A or M,x � B,

M,x � ♦iA ⇔ for some y we have xRiy and M,y � A.

A formula A is true in a model M if it is true at all points in M ; A is valid in a frame F
(notation: F � A) if it is true in any model over F ; A is valid in a class F of frames (notation:
F � A) if A is valid in any frame F ∈ F . The set of all valid formulas in a class F is denoted
by L(F). The notation L(F ) abbreviates L({F}).

Proposition 1 [5]. For a class F , the set of formulas L(F) is a modal logic.

Definition 4. A logic L is complete with respect to a class F of frames if L = L(F). A logic L
is called (Kripke-) complete if it is complete with respect to some class of frames. A logic L is
called finitely approximable if it is complete with respect to some class of finite frames.

Definition 5. Consider frames F = (W,R) and G = (V, S); let f be a map from W to V .
We say that f is monotonic if

∀x ∈ W ∀y ∈ W (xRy → f(x)Sf(y));
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we say that f has the lift property if

∀x ∈ W ∀z ∈ V (f(x)Sz → ∃y (xRy ∧ f(y) = z)).

If f is surjective, monotonic, and has the lift property, then f is a p-morphism from F to G (nota-
tion f : F � G); f is a p-morphism from an n-frame (W,R1, . . . , Rn) to an n-frame (V, S1, . . . , Sn)
if f : (W,Ri) � (V, Si) for all i = 1, . . . , n. Finally, F � G means that there exists a p-morphism
from F to G.

The following fact is well known (see, e.g., [5]).

Lemma 1 (p-morphism lemma). If F � G, then L(F ) ⊆ L(G).

Consider the following modal formulas:

ATr := ♦♦p → ♦p, ARefl := p → ♦p,

ASer := ♦
, AConf := ♦�p → �♦p,

AM := �♦p → ♦�p, AM′ := �⊥∨ ♦�⊥,

ADens2 := ♦p1 ∧ ♦p2 → ♦(♦p1 ∧ ♦p2).

Proposition 2 [4, 5]. For a monomodal frame F = (W,R),
• F � ATr ⇐⇒ F is transitive: ∀x ∀y ∀z (xRy ∧ yRz → xRz);
• F � ARefl ⇐⇒ F is reflexive: ∀x (xRx);
• F � AConf ⇐⇒ F is (weakly) directed : ∀x ∀y1 ∀y2 ∃z (xRy1 ∧ xRy2 → y1Rz ∧ y2Rz);
• F � ASer ⇐⇒ F is serial : ∀x ∃y (xRy);
• F � ADens2 ⇐⇒ F is 2-dense: ∀x ∀y1 ∀y2 ∃z (xRy1 ∧ xRy2 ⇒ xRz ∧ zRy1 ∧ zRy2);
• F � ATr, F � AM ⇐⇒ F is transitive and has the M-property : ∀x ∃y (xRy∧∀z (yRz → y = z));
• F � AM′ ⇐⇒ F has the M′-property: ∀x ∃y ((xRy ∨ x = y) ∧ ∀z ¬(yRz)).

3. MODAL LOGICS OF REGIONS

3.1. Regions in R
n

For a set V in a topological space, let IV and CV denote the interior and the closure of V ,
respectively. Recall that if V is open and connected, then V is called a domain.

Definition 6. A compact set U ⊆ R
n is called a region in R

n (n-region, for short) if U is the
closure of some nonempty domain.

For a set of n-regions W, let W◦ denote the extension of W by all singletons: W◦ = W ∪
{{X} | X ∈ R

n}.
Let d(X,Y ) denote the Euclidean distance between points X,Y ∈ R

n.
For X ∈ R

n and r ≥ 0, let B(X, r) denote the closed ball of radius r centered at X; for
U ⊆ R

n, let
B(U, r) := {X | for some Y ∈ U d(X,Y ) ≤ r}.

Consider the following sets of regions in R
n:

Regn, the set of all n-regions;
Convn, the set of all convex n-regions;
Bn = {B(X, r) | X ∈ R

n, r > 0}, the set of all balls;

Rn =
{ n∏

i=1
[ai, bi] | [a1, b1], . . . , [an, bn] ∈ B1

}
, the set of all n-bricks.

Observe that if n = 1, then Reg1 = Conv1 = R1 = B1 and all these sets coincide with the set of
all segments on the real line.
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For sets U, V ⊆ R
n, put

U � V := CU ⊆ IV, �:=�−1 .

We study the logics of regions ordered by the relations ⊆ and � (and their converse ⊇ and �).
Let K be the minimal modal logic; for an axiom A and a logic L, let L+A be the minimal modal

logic that contains L and A. Put

K4 = K + ATr, S4 = K4 + ARefl,

S4.1 = K4 + AM, S4.2 = S4 + AConf,
LM0 = K4 + ADens2, LM1 = LM0 + ASer,
LM2 = LM1 + AConf, LM3 = LM0 + AM′ .

Theorem 1 (see [4]). Let W ∈ {Regn, Convn,Rn,Bn} and R ∈ {⊆,⊇,�,�}. Then the logics
of frames (W, R) and (W◦, R) are described in the following table:

The logics of frames (W , R) and (W◦, R), R ∈ {⊆,⊇, �, �}

� ⊇ � ⊆
W LM1 S4 LM2 S4.2
W◦ LM3 S4.1 LM2 S4.2

3.2. Saturated Sets of Regions

For a function f : A → B, let f∗ : P(A) → P(B), where f∗(C) = {f(x) | x ∈ C} for any C ⊆ A.
For a set V ⊆ R

n, let −V denote the complement of V in R
n.

Definition 7. A set of n-regions W is called saturated if

∀u ∈ Bn ∃v ∈ W (u ⊆ v) , (1)
∀u ∈ W ∀ε > 0 ∃v ∈ W (u � v ⊆ B(u, ε)) , (2)

∀u ∈ W ∀ε > 0 ∃v ∈ W (−B(−u, ε) ⊆ v � u) , (3)

and there exists an open continuous function f : R
n → R such that for R ∈ {⊆,⊇,�,�},

∀u ∈ W◦ ∀s ∈ Reg◦1 (f∗(u)Rs → ∃w ∈ W◦ (uRw ∧ f∗(w) = s)) . (4)

Property (4) corresponds to the lift property of the map f∗ from the frame (W◦, R) to the frame
(Reg◦1, R).

Proposition 3. Let W be a saturated set of n-regions, n ≥ 1, R ∈ {⊆,⊇,�,�}. Then

f∗ : (W, R) � (Reg1, R), f∗ : (W◦, R) � (Reg◦1, R).

Proof. Since f is continuous, the image of any u ∈ W◦ is a segment or a point. If u ∈ W, then
Iu �= ∅, and since f is open, If∗(u) �= ∅; i.e., f∗(u) is a segment. Therefore,

f∗ : W → Reg1, f∗ : W◦ → Reg◦1. (5)

Let us check the surjectivity. Let s ∈ W◦. Due to (1), W �= ∅. Let v0 ∈ W, f∗(w) = s0 ∈ Reg◦1.
Consider the segment s1 that contains s0 ∪ s. Due to (4), s0 ⊆ s1 implies f∗(v1) = s1 for some
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v1 ∈ W◦; similarly, s1 ⊇ s implies f∗(v) = s for some v ∈ W◦. Thus, the map f∗ : W◦ → Reg◦1 is
surjective, and due to (5), f∗ : W → Reg1 is surjective.

Let us show that f in monotonic. For u, v ∈ W◦, if u ⊆ v, then f∗(u) ⊆ f∗(v). Let u � v.
Then u ⊆ Iv ⊆ v, and f∗(u) ⊆ f∗(Iv) ⊆ f∗(v). The set f∗(Iv) is open because f is open; thus,
f∗(u) � f∗(v).

The lift property immediately follows from (4).

One can show that the sets of regions Regn, Convn, Rn, and Bn are saturated: properties (1)–(3)
are checked by straightforward arguments, and to show (4), it suffices to consider the projection
Pr1 : (x1, . . . , xn) �→ x1 (see [4] for more details).

The following theorem is a generalization of Theorem 1.

Theorem 2. The table of Theorem 1 describes the logics of any saturated set of n-regions,
n ≥ 1.

Proof. From the p-morphism lemma and Proposition 3, we have

L(W, R) ⊆ L(Reg1, R), L(W◦, R) ⊆ L(Reg◦1, R).

Let us check the converse inclusions. Due to Proposition 2 and Theorem 1, it suffices to check
the corresponding first-order properties of the relations ⊆, ⊇, �, and �.

All these relations are transitive; the relations ⊆ and ⊇ are reflexive. The frame (W◦,⊇) has
the M-property: if u ∈ W◦, then for X ∈ u we have u ⊇ {X}, and if {X} ⊇ v, then v = {X}.
Similarly, the frame (W◦,�) has the M′-property. Directedness of the relations ⊆ and � follows
from (1) because any u1 and u2 from W◦ are (compactly) contained in some ball u ∈ Bn. Also,
this implies seriality for the frames (W,�) and (W◦,�); seriality of (W,�) follows from (3).

Now let us check 2-density of the relations � and �. Let u � v1 and u � v2. Since u is compact,
for some ε > 0 we have B(u, ε) � u1 ∩ u2. Due to (2), u � v ⊆ B(u, ε) for some v ∈ W. Thus,
u � v, v � v1, and v � v2. Similarly, if u � v1 and u � v2, then due to (3) there exists a region
v ∈ W such that u � v � u1 ∪ u2.

Consider the following example. For a region u ∈ Regn, let H(u) be the minimal set of regions
that contains u and is closed under homotheties of R

n. In particular, Bn = H(B(X, r)) for arbitrary
X ∈ R

n and r > 0. Let u = B(X, r1) − IB(X, r2), X ∈ R
n, r1 > r2 > 0. It is easy to see that

the set of regions W = H(u) is not saturated. Moreover, if u is a convex region, then W = H(u)
happens to be saturated due to the following proposition.

Proposition 4. If W is a nonempty set of convex regions closed under homotheties of R
n,

then W is saturated.

Proof. For O ∈ R
n and k �= 0, let Hk

O denote the homothety with center 0 and coefficient k.
Let us check (1). Let v ∈ W. Since Iv �= ∅, we have B(X, ε) ⊆ v for some X ∈ v and

ε > 0. Thus, for an arbitrary ball u ∈ Bn we have u ⊆ Hk
X(B(X, ε)) for sufficiently large k, which

implies (1).
Note that if u ∈ W, k > 1, O ∈ Iu, then u � Hk

O(u). Indeed, O ∈ IHk
O(u), and the inverse

image of any Y �= O under Hk
O belongs to the interval OY ; due to the convexity, any point of the

interval OY belongs to the interior of u; thus, its image belongs to the interior of Hk
O(u). Therefore,

Y ∈ IHk
O(u) and u � Hk

O(u). Analogously, if O ∈ u, then u ⊆ Hk
O(u).

Let us check properties (2) and (3). Let u ∈ W and ε > 0. Consider a point O ∈ Iu and put
a = sup{d(O,X) | X ∈ u}. To check (2), put

k = 1 +
ε

a
, v = Hk

O(u).
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Then v ∈ W, u � v. For X ∈ u, X ′ = Hk
O(X), we have

d(X,X ′) = (k − 1)d(O,X) ≤ (k − 1)a = ε;

i.e., X ′ ∈ B(u, ε). Thus, v ⊆ B(u, ε). Similarly, for

v = Hk
O(u), where k = 1 − min

(
ε

a
,
1
2

)
,

we have −B(−u, ε) ⊆ v � u.
To check (4), put f = Pr1. Let u ∈ W◦, f∗(u) = [a, b], and s ∈ Reg◦1 = [a1, b1]. Let us show

that f∗(u)Rs implies uRw ∧ f(w) = s for some w ∈ W◦. We consider only the case a �= b, a1 �= b1,
and R ∈ {�,⊆}; arguments for other cases are analogous.

Let h(x) = (x − c)k + c be the transformation of R that maps the segment [a, b] onto the

segment [a1, b1] (it is easy to find the coefficients of h: k =
b1 − a1

b − a
and c =

ka − a1

k − 1
).

Let V be the intersection of u and the hyperplane x1 = c. Since c ∈ [a, b], we have V �= ∅. Put
w = Hk

O(u) for O ∈ V . Then u ⊆ w. Note that Pr1(Hk
O(u)) = h(Pr1(u)). Therefore, f∗(w) = s.

Moreover, if [a, b] � [a1, b1], then c is an interior point of the segment [a, b], and due to the
convexity of u the set V contains interior points of u. Taking one of such points as the homothety
center, we obtain u � w.

Theorem 2 and Proposition 4 immediately imply the following fact.

Theorem 3. The table of Theorem 1 describes the logics of any nonempty set of convex regions
closed under homotheties.

3.3. Logics with the Universal Modality

For a monomodal frame F = (W,R), let F u be the bimodal frame with the universal relation:

F u = (W,R,W × W ).

Consider the bimodal language FM (♦,♦∃ ). For a monomodal logic L, let LU be the minimal
bimodal logic that contains L and the formulas

♦∃ ♦∃ p → ♦∃ p, p → ♦∃ p, p → ¬♦∃¬♦∃ p;
♦p → ♦∃ p.

Then (W,R1, R2) � LU ⇐⇒ (W,R1) � L, R2 is an equivalence relation on W , and R1 ⊆ R2 [6].
A frame F = (W,R) is downward-directed if it satisfies the condition ∀x ∀y ∃z (zRx ∧ zRy).

Consider the following modal formula:

A↓ := ♦∃ p ∧ ♦∃ q → ♦∃ (♦p ∧ ♦q).

For a monomodal logic L, put
LU↓ := LU + A↓ .

The following proposition is straightforward.

Proposition 5 [7]. For a monomodal frame F ,

• F u � A↓ ⇐⇒ F is downward-directed ;
• If F is downward-directed, then F u � L(F )U↓.
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Logics of downward-directed frames with universal modality were considered in [7]. In particular,
the following theorem was proved.

Theorem 4 [7]. For n ≥ 1, we have

L((Regn,⊇)u) = S4U↓, L((Reg◦n,⊇)u) = S4.1U↓;

L((Regn,�)u) = LM1U↓, L((Reg◦n,�)u) = LM3U↓.

Let us generalize this result for the case of an arbitrary saturated set of regions.

Proposition 6. Let F and G be monomodal frames, F � G. Then L(F u) ⊆ L(Gu).

Proof. Any surjective map f : W → V is a p-morphism of frames (W,W × W ) � (V, V × V ).
Thus, F u � Gu.

Theorem 5. Let W be a saturated set of n-regions, n ≥ 1. Then

L((W,⊇)u) = S4U↓, L((W◦,⊇)u) = S4.1U↓;

L((W,�)u) = LM1U↓, L((W◦,�)u) = LM3U↓.

Proof. Let R ∈ {⊇,�}. Due to Theorem 4, it suffices to show that L((W, R)u) = L((Regn, R)u)
and L((W◦, R)u) = L((Reg◦n, R)u).

Due to property (1) of saturated sets of regions, the frames (W, R) and (W◦, R) are downward-
directed, and from Proposition 5 it follows that L((W, R)u) ⊇ L((Regn, R)u) and L((W◦, R)u) ⊇
L((Reg◦n, R)u).

The converse inclusions follow from Propositions 3 and 6.

The question of axiomatization of the relations ⊆ and � in the language with the universal
modality is open.

4. CONCLUDING REMARKS

Theorems 2 and 5 give us finite modal axiomatizations for various sets of regions in R
n. Let us

consider properties of the described logics more precisely. It is well known that the logics S4,
S4.1, and S4.2 are finitely approximable (see [5]); since they are finitely axiomatizable, they are
decidable. Moreover, they are PSPACE-complete (see [8]). Analogous results for the logics LM1,
LM2, and LM3 were proved recently: results on finite approximation were proved in [9], and
PSPACE-completeness was proved in [10]. In [7] it was shown that these properties are preserved
for the logics S4U↓, S4.1U↓, LM1U↓, and LM3U↓. Therefore, the logics described in Theorems 2
and 5 are finitely approximable and PSPACE-complete.

Due to Theorem 3, the logics of various sets of convex regions (balls, cylinders, cones, convex
polyhedra, etc.) ordered by one of the relations ⊆, ⊇, �, or � coincide with each other: these are
the logics of the set of segments Reg1. However, for other natural relations between regions, the
situation might be different. To illustrate this, consider the relation ⊂: U ⊂ V ⇔ U ⊆ V ∧U �= V .
In [4] it was shown that (Rn,⊂) = (Rm,⊂) if and only if m = n; also, it was shown that (Rn,⊂) =
(Bm,⊂) if and only if m = n = 1. Using the formulas

Ak :=
∧

1≤i≤k

♦pi →
∨

1≤i<j≤k

♦(♦pi ∧ ♦pj), k ≥ 2,

proposed in [4], we give another example.
For m ≥ 3, let Polm2 be the set of all convex n-gons on the plane R

2. It is easy to show that the
axiom Ak is valid in the frame (Polm2 ,⊂) if and only if we have

∀u ∀u1 . . . ∀uk

( ∧
1≤i≤k

u ⊂ ui →
∨

1≤i<j≤k

∃v (u ⊂ v ∧ v ⊂ ui ∧ v ⊂ uj)

)
;
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by straightforward arguments, this property holds for the frame (Polm2 ,⊂) if k > 2m and is violated
if k ≤ 2m. Thus, the logics L(Polm2 ,⊂) are different for all m. Analogously, it is possible to distinct
logics of polyhedra in a multidimensional space.

Modal axiomatization of the relation ⊂ (for any set of regions considered in this paper) is
unknown. This question is directly related to the unsolved problem put by R. Goldblatt in [11]:
to axiomatize the strict causal future relation in the Minkowski space (for details on relativistic
modal logics and their relationship with modal logics of regions, see [4]).

The author is grateful to the referee for very detailed and useful comments. Also, the author
would like to thank Prof. V. Shehtman for his help during the work on this paper.
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