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Language

Fix a set A for the alphabet of modal operators.
A-formulas: a countable set Var (propositional variables), Boolean connectives,
unary connectives ♢ ∈ A.

Normal modal logics: De�nition 1

A set of modal A-formulas L is a normal
modal logic, if for all ♢ ∈ A, L contains

classical tautologies

♢⊥ ↔ ⊥, ♢(p ∨ q) ↔ ♢p ∨ ♢q

and is closed under MP, Sub, and Mon:
if (φ→ ψ) ∈ L, then (♢φ→ ♢ψ) ∈ L.

Normal modal logics: De�nition 2

A modal algebra is a Boolean algebra B
endowed with unary operations that
distributes over �nite disjunctions.

A set of modal formulas L is a normal
modal logic, if L is the logic of a modal
algebra B: L = {φ | φ = 1 holds in B}
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modal logic, if L is the logic of a modal
algebra B: L = {φ | φ = 1 holds in B}

Kripke semantics

A (Kripke) frame F: (W , (R♢)♢∈A), where R♢ are binary relations on a set W .
A model M on F is a pair (F, θ) where θ : Var→ P(W ).

M, x ⊨ p i� x ∈ θ(p), M, x ⊨ ♢φ i� M, y ⊨ φ for some y with xR♢y .

Log(F)= {φ | F ⊨ φ}, where F ⊨ φ means that M, x ⊨ φ for all M on F and all x in M.

The algebra Alg(F) of an A-frame (W , (R♢)♢∈A) is the powerset algebra of W with
the unary operations f♢: for Y ⊆ W , f♢(Y ) is R−1

♢ [Y ] = {x | ∃y ∈ Y xR♢y}.

F ⊨ φ i� φ = 1 holds in Alg(F)
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A logic L is Kripke complete, if L is the logic of a class C of Kripke frames:
L =

⋂
{Log(F) | F ∈ C}.

A logic L has the �nite model property, if L is the logic of a class C of �nite frames
(algebras, models).

Fact

If L has the fmp and is �nitely axiomatizable, then it is decidable.

An algebra A is locally �nite, if every �nitely generated subalgebra of A is �nite.

A logic L is locally �nite (aka locally tabular), if for all k < ω there are only �nitely
many formulas in k variables (up to ↔L).

TFAE:

L is locally �nite. Every �nitely generated free
(aka Lindenbaum-Tarski)
algebra of L is �nite.

The variety of L-algebras is
locally �nite, i.e., all �nitely
generated L-algebra are �nite.

normal modal logics ⊋
Kripke complete logics ⊋
logics with the �nite model property ⊋
logics whose all extensions have the fmp ⊋

locally �nite logics
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Local �niteness for modal logics and their relatives (sound but incomplete list):

Segerberg, K., �An Essay in Classical Modal Logic,� 1971.

Kuznetsov, A. Some properties of the structure of varieties of pseudo-Boolean algebras,
1971.

Maksimova, L. Modal logics of �nite slices, 1975.

Komori, Y. The �nite model property of the intermediate propositional logics on �nite
slices, 1975.

Byrd, M. On the addition of weakened L-reduction axioms to the Brouwer system, 1978.

Makinson, D. Non-equivalent formulae in one variable in a strong omnitemporal modal
logic, 1981.

Mardaev, S. The number of prelocally tabular superintuitionistic propositional logics,
1984.

Citkin, A. Finite axiomatizability of locally tabular superintuitionistic logics, 1986.

...

Bezhanishvili, G. and Grigolia, R. Locally tabular extensions of MIPC, 1998.

Bezhanishvili, G., Locally �nite varieties, 2001.

Bezhanishvili, N. Varieties of two-dimensional cylindric algebras. Part I: Diagonal-free
case, 2002.

Shehtman, V. Canonical �ltrations and local tabularity, 2014.

Sh. and Shehtman, V. Local tabularity without transitivity, 2016

Sh. Glivenko's theorem, �nite height, and local tabularity, 2021.

Dzik W., Kost S., Wojtylak P. Finitary uni�cation in locally tabular modal logics
characterized, 2022

Sh. Su�cient conditions for local tabularity of a polymodal logic, to appear.

...
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Local �niteness and �nite height

A poset is of �nite height ≤ h if its every chain contains at most h elements.

A cluster in an A-frame F = (W , (R♢)♢∈A) is an equivalence class with respect to the
relation

∼F = {(a, b) | aRFb and bRFa},
where RF is the transitive re�exive closure of

⋃
A R♢.

For clusters C ,D, put

C ≤F D i� xRFy for some (all) x ∈ C , y ∈ D.

The poset (W /∼F,≤F) is called the skeleton of F.

The height of a frame F is the height of its skeleton.
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Local �niteness and �nite height

Unimodal transitive case

♢♢p → ♢p expresses the transitivity of a
binary relation.

Formulas of �nite height:

B0 = ⊥, Bi+1 = pi+1 → □(♢pi+1 ∨ Bi )

(□ abbreviates ¬♢¬)

[Segerberg 1971; Maksimova 1975]
Let L ⊢ ♢♢p → ♢p. Then

L is LF i� L ⊢ Bn for some n.

This is a nice theorem in many respects.
Besides the fact that it gives a natural
semantic criterion of local �niteness (in
terms of relations), it also provides an ax-
iomatic characterization: local �niteness
is expressed by a formula from an explicitly
described set {Bn | n < ω}.
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Unimodal non-transitive and polymodal
cases are much less clear...
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terms of relations), it also provides an ax-
iomatic characterization: local �niteness
is expressed by a formula from an explicitly
described set {Bn | n < ω}.

Unimodal non-transitive and polymodal
cases are much less clear...

Unimodal nontransitive case

Sometimes an analog of �nite height crite-
rion holds in non-transitive case:

[Shehtman & Sh, 2016] Let L be a
unimodal logic containing
♢ . . .♢p → ♢p ∨ p. Then

L is LF i� L has a formula of �nite height.

(Formulas of �nite height will be slight
modi�cations of Bi 's.)

But in general, in non-transitive case, �nite
height is not su�cient:

[Byrd 1978; Makinson, 1981] There is a
re�exive symmetric structure F = (W ,R)
with R ◦ R = W ×W (so its height is 1)
s.t. its logic is not LF. Moreover, its
one-variable fragment is in�nite.
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Polymodal case: (non)examples

If the 1-variable fragment of an A-logic L
is �nite, then:
(1) [Folklore(?)] For some �nite m, L has
a formula expressing the following on
frames:
If there is a path from x to y , then there
is a path of length ≤ m from x to y .
(2) [Shehtman & Sh, 2016] L has a
formula of �nite height.
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a formula expressing the following on
frames:
If there is a path from x to y , then there
is a path of length ≤ m from x to y .
(2) [Shehtman & Sh, 2016] L has a
formula of �nite height.

The logic of monadic Boolean algebras
(aka S5) is one of the simplest examples
of locally �nite modal logics.

However, the logic S5 ∗ S5 with two
monadic operators is not locally �nite;
moreover, its one-variable fragment is in-
�nite.

Indeed, S5 ∗ S5 is the logic of frames
(W ,∼1,∼2) with two equivalence rela-
tions. So (1) does not hold for S5 ∗ S5.
We need axioms that make all ♢ ∈ A
dependant.
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If the 1-variable fragment of an A-logic L
is �nite, then:
(1) [Folklore(?)] For some �nite m, L has
a formula expressing the following on
frames:
If there is a path from x to y , then there
is a path of length ≤ m from x to y .
(2) [Shehtman & Sh, 2016] L has a
formula of �nite height.

[N. Bezhanishvili, 2002] Every extension of

S5 ∗ S5+ ♢1♢2p ↔ ♢2♢1p

is locally �nite.
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Part II. Conditions for local �niteness in the polymodal case.
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Lexicographic sums of frames and logics

Let A and B be disjoint alphabets of modalities.

De�nition

Let I = (I , (Sa)a∈A) be an A-frame, (Fi )i∈I be B-frames, Fi = (Xi , (Ri,b)b∈B). The

lexicographic sum
lex∑

I
Fi is the (A ∪ B)-frame

(⊔
i∈I Xi , (S

lex
a )a∈A, (Rb)b∈B

)
:

(i ,w)S lex
a (j , u) i� iSj ,

(i ,w)Rb(j , u) i� i = j & wRi,bu.

In many cases, the modal logic of a class of sums inherits �good� properties of the
logics of summands/indices.

Transfer results for sums in modal logic:

Axiomatization [Kracht 1993; Beklemishev 2007; Balbiani 2009; Balbiani &
Mikul�as 2013; Balbiani & Sh, 2014; Balbiani & Fern�andez-Duque 2016]

Finite model property and decidability [Babenyshev & Rybakov 2010; Sh 2018]

Computational complexity [Sh 2008; Sh 2020]

Local �niteness [this talk]
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Su�cient conditions for local �niteness

Semantic

Let L1 and L2 be logics in disjoint alphabets
of modalities A and B, respectively.
lex∑

L1
L2 is the logic of lexicographic sums

of their frames.

Theorem (Main result)

If L1 and L2 are locally �nite, then
lex∑

L1
L2 is locally �nite.
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Formulas of �nite height: B0 = ⊥, Bi+1 = pi+1 → □(♢pi+1 ∨ Bi ).

[Segerberg 1971; Maksimova 1975] Let L ⊇ K4. Then

L is locally �nite i� L ⊢ Bn for some n.

Corollary. Let L ⊇ K4(♢1)⊕K4(♢2). Then

L is locally �nite i� L ⊢ Bm(♢1) ∧ Bn(♢2) for some n,m.
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Auxiliary step in the proof of main result

For a frame F = (W , (R♢)♢∈A), let F r be the frame (W , (Rr

♢)♢∈A), where Rr
a is the

re�exive closure of R♢. For a class F of frames, Fr = {F r | F ∈ F}.

Expectable theorem.

Let F be a class of frames. The Log(F) is locally �nite i� Log(Fr) is locally �nite.

�Only if� is trivial. �If� is based on the following lemma (with unexpectedly convoluted
proof)

Lemma. Let F be an irre�exive A-frame. Assume that the logic of the frame F is
locally �nite. Then for every k < ω, every k-generated subalgebra of Alg(F ) is
contained in a (k + 3|A|)-generated subalgebra of Alg(F r).

Question. Should we expect that Expectable theorem holds for locally �nite algebras
(not logics/varieties)?
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What could be other operations on frames that preserve good properties of their
algebras/logics?

For instance:

Does the �nite direct product operation on frames preserve local �niteness of their
algebras/logics?

Example

Let (ωn,⪯) be the n-th direct power of (ω,≤).
[2019] For all �nite n, Alg(ωn,⪯) is locally �nite.

n = 1: an exercise; n > 1: not that easy.

Assume that algebras (logics) of frames F1 and F2 are locally �nite. Is the algebra
(logic) of the direct product F1 × F2 locally �nite?
For quasi-orders? Partial orders? For well-founded orders? At least, for well-orders is
should be true...

Thank you!
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