Medvedev's logic and products of converse well orders

Denis I. Saveliev¹ Ilya Shapirovsky²

¹Institute for Information Transmission Problems RAS

²New Mexico State University

Advances in Modal Logic 2022, August 22

This talk is about modal logics of *Noetherian* (in other terms, *converse well-founded*) posets which are substructures of direct products of converse well-ordered sets, in particular, the products without an upper part.

Given frames $\mathfrak{F}_i = (W_i, R_i)$, $i \in I$, their direct product is the frame $\prod_i \mathfrak{F}_i = (W, R)$ where $W = \prod_{i \in I} W_i$, the Cartesian product of the sets W_i , and R is defined point-wise: xRy iff $x_iR_iy_i$ for all $i \in I$. Given a frame \mathfrak{F} , we write \mathfrak{F}^n for its *n*th direct power.

This talk is about modal logics of *Noetherian* (in other terms, *converse well-founded*) posets which are substructures of direct products of converse well-ordered sets, in particular, the products without an upper part.

Given frames $\mathfrak{F}_i = (W_i, R_i)$, $i \in I$, their direct product is the frame $\prod_i \mathfrak{F}_i = (W, R)$ where $W = \prod_{i \in I} W_i$, the Cartesian product of the sets W_i , and R is defined point-wise: xRy iff $x_iR_iy_i$ for all $i \in I$. Given a frame \mathfrak{F} , we write \mathfrak{F}^n for its *n*th direct power.

Two examples: Grz.2 and modal Medvedev's logic

1 Grz.2= Grz + $\square p \rightarrow \square p$, Grzegorczyk logic extended with the axiom of weak directedness.

Theorem (Maksimova, Shehtman, Skvortsov, 1979).

$$\operatorname{Grz.2} = Log\{(2, \geq)^n \mid n < \omega\}$$

2 Cubes (2, ≥)ⁿ without the top element are called Medvedev's frames. Modal Medvedev's logic Mdv is the modal logic of these structures:

 $Mdv = Log\{(2, \geq)^n \setminus \{top\} : n < \omega\}$

This talk is about modal logics of *Noetherian* (in other terms, *converse well-founded*) posets which are substructures of direct products of converse well-ordered sets, in particular, the products without an upper part.

Given frames $\mathfrak{F}_i = (W_i, R_i)$, $i \in I$, their direct product is the frame $\prod_i \mathfrak{F}_i = (W, R)$ where $W = \prod_{i \in I} W_i$, the Cartesian product of the sets W_i , and R is defined point-wise: xRy iff $x_iR_iy_i$ for all $i \in I$. Given a frame \mathfrak{F} , we write \mathfrak{F}^n for its *n*th direct power.

Two examples: Grz.2 and modal Medvedev's logic

1 Grz.2= Grz + $\square p \rightarrow \square \Diamond p$, Grzegorczyk logic extended with the axiom of weak directedness.

Theorem (Maksimova, Shehtman, Skvortsov, 1979).

$$\operatorname{Grz.2} = Log\{(2, \geq)^n \mid n < \omega\}$$

2 Cubes (2, ≥)ⁿ without the top element are called Medvedev's frames. Modal Medvedev's logic Mdv is the modal logic of these structures:

 $Mdv = Log\{(2, \geq)^n \setminus \{top\} : n < \omega\}$

In spite of the similarity in the above semantic characterizations, logical properties of $\rm Grz.2$ and $\rm Mdv$ are different. In particular:

 ${\rm Grz.2}$ is given by a finite set of axioms, so in view of its completeness with respect to a class of finite frames, it is decidable.

It is well known that both modal and intuitionistic Medvedev logics are not finitely axiomatizable [Maksimova, Shehtman, Skvortsov 1979; Prucnal 1979].

Whether the Medvedev logic (modal or intuitionistic) is recursively axiomatizable is an old-standing open problem.

$$\begin{split} &\Gamma(n) := Log((\omega, \geq)^n), \\ &\Delta(n) := Log((\omega, \geq)^n \setminus \{ \mathrm{top} \}) \end{split}$$

 $\Delta(1)=\Gamma(1)={\rm Grz.3},$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = Log\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite *n*, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary.

For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$.

$$\Gamma(n) := Log((\omega, \ge)^n),$$
$$\Delta(n) := Log((\omega, \ge)^n \setminus \{ \operatorname{top} \}).$$

 $\Delta(1)=\Gamma(1)={\rm Grz.}3,$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = \mathrm{Log}\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary.

For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. ${\rm Grz.2}$ is the logic of all (finite) Noetherian non-strict posets with a greatest element.

Recall that $\operatorname{Grz} 2 = Log\{(2, \geq)^n \mid n < \omega\}.$

Corollary. $\bigcap_{n < \omega} \Gamma(n) = \operatorname{Grz.2}$.

$$\Gamma(n) := Log((\omega, \ge)^n),$$
$$\Delta(n) := Log((\omega, \ge)^n \setminus \{ \operatorname{top} \}).$$

 $\Delta(1)=\Gamma(1)={\rm Grz.}3,$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = \mathrm{Log}\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite *n*, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. ${\rm Grz.2}$ is the logic of all (finite) Noetherian non-strict posets with a greatest element.

Recall that $\operatorname{Grz} 2 = Log\{(2, \geq)^n \mid n < \omega\}.$

Corollary. $\bigcap_{n < \omega} \Gamma(n) = \operatorname{Grz.2}$.

Theorem. $\bigcap_{n < \omega} \Delta(n) = M dv.$

$$\begin{split} &\Gamma(n) := Log((\omega, \geq)^n), \\ &\Delta(n) := Log((\omega, \geq)^n \setminus \{ \mathrm{top} \}). \end{split}$$

 $\Delta(1)=\Gamma(1)={\rm Grz.}3,$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = Log\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. ${\rm Grz.2}$ is the logic of all (finite) Noetherian non-strict posets with a greatest element.

Recall that $\operatorname{Grz} 2 = Log\{(2, \geq)^n \mid n < \omega\}.$

Corollary. $\bigcap_{n < \omega} \Gamma(n) = \operatorname{Grz.2}$.

Theorem. $\bigcap_{n < \omega} \Delta(n) = M dv$.

M dv, $\Gamma(n)$, $\Delta(n)$ are co-recursively enumerable.

Recall that:

 $Md\mathbf{v}$ is not finitely axiomatizable; whether $Md\mathbf{v}$ is RE is an old open problem.

Q. Are the logics $\Gamma(n)$, $\Delta(n)$, $2 \le n < \omega$, finitely axiomatizable? RE?

$$\begin{split} &\Gamma(n) := Log((\omega, \geq)^n), \\ &\Delta(n) := Log((\omega, \geq)^n \setminus \{ \mathrm{top} \}). \end{split}$$

 $\Delta(1)=\Gamma(1)={\rm Grz.}3,$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = \mathrm{Log}\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. ${\rm Grz.2}$ is the logic of all (finite) Noetherian non-strict posets with a greatest element.

Recall that $\operatorname{Grz} 2 = Log\{(2, \geq)^n \mid n < \omega\}.$

Corollary. $\bigcap_{n < \omega} \Gamma(n) = \operatorname{Grz.2}$.

Theorem. $\bigcap_{n < \omega} \Delta(n) = M dv.$

M dv, $\Gamma(n)$, $\Delta(n)$ are co-recursively enumerable.

Recall that:

 $Md\mathbf{v}$ is not finitely axiomatizable; whether $Md\mathbf{v}$ is RE is an old open problem.

Q. Are the logics $\Gamma(n)$, $\Delta(n)$, $2 \le n < \omega$, finitely axiomatizable? RE?

Theorem (Shehtman, 1990). Mdv.2 = Grz.2

Theorem. $\Delta(n).2 = \Gamma(n)$ for all $n < \omega$.

Corollary. If $\Delta(n)$ is finitely (recursively) axiomatizable, then so is $\Gamma(n)$.

Inclusions between logics $\Gamma(n)$ and $\Delta(n)$:

Proposition For all $n < \omega$,

$$(1) = \Gamma(1) = \operatorname{Grz.3}_{2}$$

$$\bigcirc \operatorname{Grz} \subset \Delta(n) \subset \Gamma(n) \text{ if } n \geq 2,$$

$${igle 0}\ \Delta(n+1)\subset \Delta(n)$$
 and $\Gamma(n+1)\subset \Gamma(n),$

$$\bigcirc$$
 $\Delta(n) \nsubseteq \Gamma(n+1)$ and $\Gamma(n) \nsubseteq \Delta(2)$.

$$\begin{split} &\Gamma(n) := Log((\omega, \geq)^n), \\ &\Delta(n) := Log((\omega, \geq)^n \setminus \{ \mathrm{top} \}) \end{split}$$

 $\Delta(1)=\Gamma(1)={\rm Grz.3},$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = Log\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} & \Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ & \Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary.

For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$.

$$\Gamma(n) := Log((\omega, \ge)^n),$$
$$\Delta(n) := Log((\omega, \ge)^n \setminus \{ \operatorname{top} \})$$

 $\Delta(1)=\Gamma(1)={\rm Grz.}3,$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = Log\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. 1. *n*-adic fragments of SO logic of ω .

By the standard translation argument, the logics $\Gamma(n)$ and $\Delta(n)$ are fragments of the *n*-adic (i.e., relation variables are *n*-ary) second order logic over natural numbers with the standard ordering. Propositional variables *p* are interpreted as *n*-ary predicates on ω , the order on tuples in $(\omega, \geq)^n$ is interpreted via conjunctions $\bigwedge_{i < n} x_i \geq y_i$.

$$\Gamma(n) := Log((\omega, \ge)^n),$$
$$\Delta(n) := Log((\omega, \ge)^n \setminus \{ \operatorname{top} \}).$$

 $\Delta(1)=\Gamma(1)={\rm Grz.3},$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = \mathrm{Log}\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. 1. *n*-adic fragments of SO logic of ω .

By the standard translation argument, the logics $\Gamma(n)$ and $\Delta(n)$ are fragments of the *n*-adic (i.e., relation variables are *n*-ary) second order logic over natural numbers with the standard ordering. Propositional variables *p* are interpreted as *n*-ary predicates on ω , the order on tuples in $(\omega, \geq)^n$ is interpreted via conjunctions $\bigwedge_{i < n} \times_i \geq y_i$.

2. Interval Temporal Logic.

The logics $\Gamma(2)$ and $\Delta(2)$ can be considered in the context of interval temporal logic. Let Wbe the set of closed segments [m, n] of integer numbers containing a fixed integer (e.g., 0):

$$W := \{[m, n] : m \le 0 \le n\}.$$

It is immediate that $Log(W, \supseteq)$ is $\Gamma(2)$ and $Log(W \setminus \{[0,0]\}, \supseteq)$ is $\Delta(2)$ according to the fact that (W, \supseteq) is isomorphic to $(\omega, \ge)^2$; the isomorphism is defined by letting

$$(m, n) \mapsto [-m, n].$$

$$\Gamma(n) := Log((\omega, \ge)^n),$$

 $\Delta(n) := Log((\omega, \ge)^n \setminus \{ top \}).$

 $\Delta(1)=\Gamma(1)={\rm Grz.3},$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = \mathrm{Log}\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite *n*, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$.

3. Modal logics of model-theoretic relations

Given a class C of models, a binary relation \mathcal{R} between models, and a modeltheoretic language L, one can consider the modal logic $\mathrm{ML}^{L}(\mathcal{C},\mathcal{R})$, where variables are evaluated by sentences of L and the modal operator is interpreted via \mathcal{R} , and

 $\mathfrak{A} \models \Diamond \varphi \quad ("\varphi \text{ is possible at } \mathfrak{A}") \text{ iff} \\ \mathfrak{B} \models \varphi \text{ for some } \mathfrak{B} \text{ with } \mathfrak{ARB}$

$$\Gamma(n) := Log((\omega, \ge)^n),$$
$$\Delta(n) := Log((\omega, \ge)^n \setminus \{ \operatorname{top} \}).$$

 $\Delta(1)=\Gamma(1)={\rm Grz.3},$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = Log\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. 3. Modal logics of model-theoretic relations

Given a class C of models, a binary relation \mathcal{R} between models, and a modeltheoretic language L, one can consider the modal logic $\mathrm{ML}^{L}(\mathcal{C},\mathcal{R})$, where variables are evaluated by sentences of L and the modal operator is interpreted via \mathcal{R} , and

 $\mathfrak{A} \models \Diamond \varphi \quad ("\varphi \text{ is possible at } \mathfrak{A}") \text{ iff} \\ \mathfrak{B} \models \varphi \text{ for some } \mathfrak{B} \text{ with } \mathfrak{ARB}$

During last decades, modal logics of various relations between models and theories of arithmetics [Shavrukov, Visser, Berarducci, Ignatiev, Hamkins, and others] and between models of set theory [Hamkins, Löwe, Block, Leibman, Tanmay, and others] were considered.

$$\Gamma(n) := Log((\omega, \ge)^n),$$
$$\Delta(n) := Log((\omega, \ge)^n \setminus \{ \operatorname{top} \}).$$

 $\Delta(1)=\Gamma(1)={\rm Grz.3},$ the logic of all (finite) linear Noetherian non-strict partial orders.

All $\Gamma(n)$ and $\Delta(n)$ have the fmp (trivially):

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{(m,\geq)^n : m < \omega\}, \\ &\Delta(n) = Log\{(m,\geq)^n \setminus \{\mathrm{top}\} : m < \omega\}. \end{split}$$

Theorem. For all finite n, we have:

$$\begin{split} &\Gamma(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) : \alpha_i \in \mathrm{Ord}\}, \\ &\Delta(n) = \mathrm{Log}\{\prod_{i < n} (\alpha_i, \geq) \setminus \{\mathrm{top}\} : \alpha_i \in \mathrm{Ord}\}. \end{split}$$

Proof via selective filtration and Dickson's lemma.

Corollary. For all finite n, $Log(\mathfrak{F}) = Grz.3$ implies $Log(\mathfrak{F}^n) = \Gamma(n)$ and $Log(\mathfrak{F}^n \setminus \{top\}) = \Delta(n)$. 3. Modal logics of model-theoretic relations

Given a class C of models, a binary relation \mathcal{R} between models, and a modeltheoretic language L, one can consider the modal logic $\mathrm{ML}^{L}(\mathcal{C},\mathcal{R})$, where variables are evaluated by sentences of L and the modal operator is interpreted via \mathcal{R} , and

 $\begin{array}{l} \mathfrak{A} \models \Diamond \varphi \ (``\varphi \text{ is possible at } \mathfrak{A}") \ \text{iff} \\ \mathfrak{B} \models \varphi \text{ for some } \mathfrak{B} \text{ with } \mathfrak{ARB} \end{array}$

In general, $\mathrm{ML}^L(\mathcal{C},\mathcal{R})$ depends on the model-theoretic language L

Observation: for two L and K, $L \subseteq K$ implies $\mathrm{ML}^{L}(\mathcal{C}, \mathcal{R}) \supseteq \mathrm{ML}^{K}(\mathcal{C}, \mathcal{R}).$

 $\operatorname{MTh}^{L}(\mathcal{C},\mathcal{R})$ is *robust* iff for every language $K \supseteq L$ we have

 $\mathrm{MTh}^{\mathsf{K}}(\mathcal{C},\mathcal{R})=\mathrm{MTh}^{\mathsf{L}}(\mathcal{C},\mathcal{R}).$

Intuitively, the robust theory can be considered as a "true" modal logic of the model-theoretic relation ${\cal R}$ on ${\cal C}.$

Theorem. Let $n < \omega$, and let τ be a signature consisting of *n* unary predicates and possibly some constants. The robust modal logic of the class of models of τ with the submodel relation is $\Gamma(2^n)$ if τ has at least one constant, and $\Delta(2^n)$ otherwise.

For an ordinal α , the α th level of a Noetherian frame $\mathfrak{F} = (X, \geq)$ consists of all points of \mathfrak{F} having the rank α in the well-founded frame (X, \leq) . Let $\mathfrak{P}_{n,m}$ denote the restriction of the frame $(\omega, \geq)^n$ to its levels $\geq m$

For
$$1 \le n < \omega$$
, $0 \le m < \omega$, let $\Gamma(n, m) := \operatorname{Log}(\mathfrak{P}_{n,m})$;
 $\Gamma(\omega, m) := \operatorname{Log}\{\mathfrak{P}_{n,m} : n < \omega\}$, $\Gamma(n, \omega) := \operatorname{Log}\{\mathfrak{P}_{n,m} : m < \omega\}$,
 $\Gamma(\omega, \omega) := \operatorname{Log}\{\mathfrak{P}_{n,m} : m, n < \omega\}$.
Hence:

(i)
$$\Gamma(1, m) = \text{Grz.3 for all } m \leq \omega$$
,

(ii)
$$\Gamma(n, 0) = \Gamma(n)$$
 and $\Gamma(n, 1) = \Delta(n)$,

(iii)
$$\Gamma(\omega, 0) = \text{Grz.2}$$
 and $\Gamma(\omega, 1) = \text{Mdv.}$

Theorem

•
$$\Gamma(n,m) \supseteq \Gamma(n',m')$$
 if $n \le n' \le \omega$ and $m \le m' \le \omega$,
• $\Gamma(n,\omega) \nsubseteq \Gamma(n+1,0)$,
• $\Gamma(n,m) \nsubseteq \Gamma(n',m')$ if $\binom{m+n-1}{n-1} < \binom{m'+n'-1}{n'-1}$.

Corollary. $\Gamma(n, m) \supset \Gamma(n', m)$ if n < n'; $\Gamma(n, m) \supset \Gamma(n, m')$ if m < m'.

Q. What about the inclusions of the logics that are not under the scope of the Theorem? E.g., is $\Gamma(3,1)\subseteq\Gamma(2,2)?$

Recall that: $\operatorname{Grz} 2 = Log\{(2, \geq)^n \mid n < \omega\}, \quad \operatorname{Mdv} = \operatorname{Log}\{(2, \geq)^n \setminus \{\operatorname{top}\} : n < \omega\}$ Equivalently, $\operatorname{Grz} 2 = \operatorname{Log}(P_{\omega}(\omega), \supseteq), \quad \operatorname{Mdv} = \operatorname{Log}(P_{\omega}(\omega) \setminus \{\emptyset\}, \supseteq)$

Recall that: $\operatorname{Grz} 2 = Log\{(2, \geq)^n \mid n < \omega\}, \quad \operatorname{Mdv} = \operatorname{Log}\{(2, \geq)^n \setminus \{\operatorname{top}\} : n < \omega\}$ Equivalently, $\operatorname{Grz} 2 = \operatorname{Log}(P_{\omega}(\omega), \supseteq), \quad \operatorname{Mdv} = \operatorname{Log}(P_{\omega}(\omega) \setminus \{\emptyset\}, \supseteq)$

Given cardinals $\kappa < \lambda$, let $\mathcal{P}_{\lambda,\kappa}(X) := \mathcal{P}_{\lambda}(X) \setminus \mathcal{P}_{\kappa}(X) = \{A \subseteq X : \kappa \leq |A| < \lambda\}.$

Proposition. For all $m < \omega$, $\Gamma(\omega, m) = Log(\mathcal{P}_{\omega,m}(\omega), \supseteq) = Log\{(\mathcal{P}_{n+1,m}(n), \supseteq) : n < \omega\}$.

Related systems, the intuitionistic logics of $(\mathcal{P}(\omega) \setminus \mathcal{P}(m), \supseteq)$, $0 < m < \omega$, were considered in [Shehtman, Skvortsov, 1986]: none of them are finitely axiomatizable.

We conjecture that the logics $\Gamma(\omega, m)$ are not finitely axiomatizable as well.

Thank you!