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This talk is about modal logics of Noetherian (in other terms, converse well-founded) posets
which are substructures of direct products of converse well-ordered sets, in particular, the
products without an upper part.

Given frames Fi = (Wi ,Ri ), i ∈ I , their direct product is the frame
∏

I Fi = (W ,R) where
W =

∏
i∈I Wi , the Cartesian product of the sets Wi , and R is de�ned point-wise: xRy i�

xiRiyi for all i ∈ I . Given a frame F, we write Fn for its nth direct power.

Two examples: Grz.2 and modal Medvedev's logic

1 Grz.2= Grz + ♢□p → □♢p, Grzegorczyk logic extended with the axiom of weak
directedness.

Theorem (Maksimova, Shehtman, Skvortsov, 1979).

Grz.2 = Log{(2,≥)n | n < ω}

2 Cubes (2,≥)n without the top element are called Medvedev's frames.
Modal Medvedev's logic Mdv is the modal logic of these structures:

Mdv = Log{(2,≥)n \ {top} : n < ω}

In spite of the similarity in the above semantic characterizations, logical properties of Grz.2
and Mdv are di�erent. In particular:
Grz.2 is given by a �nite set of axioms, so in view of its completeness with respect to a class
of �nite frames, it is decidable.
It is well known that both modal and intuitionistic Medvedev logics are not �nitely
axiomatizable [Maksimova, Shehtman, Skvortsov 1979; Prucnal 1979].

Whether the Medvedev logic (modal or intuitionistic) is recursively axiomatizable is an
old-standing open problem.
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Logics Γ(n) and ∆(n)

Γ(n) := Log((ω,≥)n),

∆(n) := Log((ω,≥)n \ {top}).

∆(1) = Γ(1) = Grz.3, the logic of all (�nite)
linear Noetherian non-strict partial orders.

All Γ(n) and ∆(n) have the fmp (trivially):

Γ(n) = Log{(m,≥)n : m < ω},

∆(n) = Log{(m,≥)n\{top} : m < ω}.

Theorem. For all �nite n, we have:

Γ(n) = Log{
∏
i<n

(αi ,≥) : αi ∈ Ord},

∆(n) = Log{
∏
i<n

(αi ,≥)\{top} : αi ∈ Ord}.

Proof via selective �ltration and Dickson's
lemma.

Corollary.
For all �nite n, Log(F) = Grz.3 implies
Log(Fn) = Γ(n) and Log(Fn \ {top}) = ∆(n).
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Log(Fn) = Γ(n) and Log(Fn \ {top}) = ∆(n).

Grz.2 is the logic of all (�nite) Noetherian non-
strict posets with a greatest element.

Recall that Grz.2 = Log{(2,≥)n | n < ω}.

Corollary.
⋂

n<ω Γ(n) = Grz.2.
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Mdv, Γ(n),∆(n) are co-recursively enumerable.

Recall that:

Mdv is not �nitely axiomatizable;
whether Mdv is RE is an old open problem.

Q. Are the logics Γ(n), ∆(n), 2 ≤ n < ω,
�nitely axiomatizable? RE?
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Theorem (Shehtman, 1990). Mdv.2 = Grz.2

Theorem. ∆(n).2 = Γ(n) for all n < ω.

Corollary. If ∆(n) is �nitely (recursively)
axiomatizable, then so is Γ(n).
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Inclusions between logics Γ(n) and ∆(n):

∆(1) = Γ(1) = Grz.3

Γ(2)

∆(2) Γ(3)

∆(3) Γ(4)

∆(4)
. . .

. . . Grz.2

Mdv

Grz

Proposition For all n < ω,

1 ∆(1) = Γ(1) = Grz.3,

2 Grz ⊂ ∆(n) ⊂ Γ(n) if n ≥ 2,

3 ∆(n + 1) ⊂ ∆(n) and Γ(n + 1) ⊂ Γ(n),

4 ∆(n) ⊈ Γ(n + 1) and Γ(n) ⊈ ∆(2).
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1. n-adic fragments of SO logic of ω.

By the standard translation argument, the log-
ics Γ(n) and ∆(n) are fragments of the n-adic
(i.e., relation variables are n-ary) second order
logic over natural numbers with the standard
ordering. Propositional variables p are inter-
preted as n-ary predicates on ω, the order on
tuples in (ω,≥)n is interpreted via conjunctions∧

i<n xi ≥ yi .
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ordering. Propositional variables p are inter-
preted as n-ary predicates on ω, the order on
tuples in (ω,≥)n is interpreted via conjunctions∧

i<n xi ≥ yi .

2. Interval Temporal Logic.

The logics Γ(2) and ∆(2) can be considered in
the context of interval temporal logic. Let W
be the set of closed segments [m, n] of integer
numbers containing a �xed integer (e.g., 0):

W := {[m, n] : m ≤ 0 ≤ n}.

It is immediate that Log(W ,⊇) is Γ(2) and
Log(W \ {[0, 0]},⊇) is ∆(2) according to the
fact that (W ,⊇) is isomorphic to (ω,≥)2; the
isomorphism is de�ned by letting

(m, n) 7→ [−m, n].
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3. Modal logics of model-theoretic relations

Given a class C of models, a binary re-
lation R between models, and a model-
theoretic language L, one can consider the
modal logic MLL(C,R), where variables
are evaluated by sentences of L and the
modal operator is interpreted via R, and

A |= ♢φ (�φ is possible at A�) i�
B |= φ for some B with ARB
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are evaluated by sentences of L and the
modal operator is interpreted via R, and

A |= ♢φ (�φ is possible at A�) i�
B |= φ for some B with ARB

During last decades, modal logics of vari-
ous relations between models and theories of
arithmetics [Shavrukov, Visser, Berarducci, Ig-
natiev, Hamkins, and others] and between
models of set theory [Hamkins, L�owe, Block,
Leibman, Tanmay, and others] were considered.
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modal logic MLL(C,R), where variables
are evaluated by sentences of L and the
modal operator is interpreted via R, and

A |= ♢φ (�φ is possible at A�) i�
B |= φ for some B with ARB

In general, MLL(C,R) depends on the model-
theoretic language L.

Observation: for two L and K , L ⊆ K implies
MLL(C,R) ⊇ MLK (C,R).

MThL(C,R) is robust i� for every language
K ⊇ L we have

MTh
K (C,R) = MTh

L(C,R).

Intuitively, the robust theory can be considered
as a �true� modal logic of the model-theoretic
relation R on C.

Theorem. Let n < ω, and let τ be a signature
consisting of n unary predicates and possibly
some constants. The robust modal logic of
the class of models of τ with the submodel
relation is Γ(2n) if τ has at least one constant,
and ∆(2n) otherwise.
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Logics Γ(m, n), m, n ≤ ω.

For an ordinal α, the αth level of a Noetherian frame F = (X ,≥) consists of all points of F
having the rank α in the well-founded frame (X ,≤).
Let Pn,m denote the restriction of the frame (ω,≥)n to its levels ≥ m

(0, 0)

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,0

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,1

(1, 1)

(2, 1) (1, 2)

(2, 0) (0, 2)

(3, 0) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,2

(2, 1) (1, 2)(3, 0) (0, 3)

(4,0) (3,1) (2,2) (1,3) (0,4)

· · · · · · · · · · · · · · · · · ·

P2,3

For 1 ≤ n < ω, 0 ≤ m < ω, let Γ(n,m):= Log(Pn,m);

Γ(ω,m):= Log{Pn,m : n < ω}, Γ(n, ω):= Log{Pn,m : m < ω},
Γ(ω, ω):= Log{Pn,m : m, n < ω}.
Hence:

(i) Γ(1,m) = Grz.3 for all m ≤ ω,

(ii) Γ(n, 0) = Γ(n) and Γ(n, 1) = ∆(n),

(iii) Γ(ω, 0) = Grz.2 and Γ(ω, 1) = Mdv.

6 / 7



Γ(1, 0)

Γ(2, 0)

Γ(2, 1) Γ(3, 0)

Γ(2, 2) Γ(3, 1) Γ(4, 0)

Γ(2, 3) Γ(3, 2) Γ(4, 1) Γ(5, 0)

. .
. Γ(3, 3) Γ(4, 2) Γ(5, 1)

. . .

Γ(2, ω) . .
. Γ(4, 3) Γ(5, 2)

. . . Γ(ω, 0)

Γ(3, ω) . .
. Γ(5, 3)

. . . Γ(ω, 1)

Γ(4, ω) . .
. . . . Γ(ω, 2)

Γ(5, ω) Γ(ω, 3)

. . . . .
.

Γ(ω, ω)

= Γ(1,m) = Grz.3

= Grz.2

= Mdv

Theorem

1 Γ(n,m) ⊇ Γ(n′,m′) if n ≤ n′ ≤ ω and m ≤ m′ ≤ ω,

2 Γ(n, ω) ⊈ Γ(n + 1, 0),

3 Γ(n,m) ⊈ Γ(n′,m′) if
(m+n−1

n−1

)
<

(m′+n′−1
n′−1

)
.

Corollary. Γ(n,m) ⊃ Γ(n′,m) if n < n′; Γ(n,m) ⊃ Γ(n,m′) if m < m′.

Q. What about the inclusions of the logics that are not under the scope of the Theorem? E.g.,
is Γ(3, 1) ⊆ Γ(2, 2)?
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Γ(1, 0)

Γ(2, 0)

Γ(2, 1) Γ(3, 0)

Γ(2, 2) Γ(3, 1) Γ(4, 0)
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. .
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. . .
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. Γ(5, 3)

. . . Γ(ω, 1)

Γ(4, ω) . .
. . . . Γ(ω, 2)

Γ(5, ω) Γ(ω, 3)

. . . . .
.

Γ(ω, ω)

= Γ(1,m) = Grz.3

= Grz.2

= Mdv

Recall that: Grz.2 = Log{(2,≥)n | n < ω}, Mdv = Log{(2,≥)n \ {top} : n < ω}
Equivalently, Grz.2 = Log(Pω(ω),⊇), Mdv = Log(Pω(ω)\{∅},⊇)
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. . . . .
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Γ(ω, ω)

= Γ(1,m) = Grz.3

= Grz.2

= Mdv

Given cardinals κ < λ, let Pλ,κ(X ):= Pλ(X ) \ Pκ(X ) = {A ⊆ X : κ ≤ |A| < λ}.

Proposition. For all m < ω, Γ(ω,m) = Log(Pω,m(ω),⊇) = Log{(Pn+1,m(n),⊇) : n < ω}.

Related systems, the intuitionistic logics of (P(ω)\P(m),⊇), 0 < m < ω, were considered in
[Shehtman, Skvortsov, 1986]: none of them are �nitely axiomatizable.

We conjecture that the logics Γ(ω,m) are not �nitely axiomatizable as well.
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. .
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Γ(3, ω) . .
. Γ(5, 3)

. . . Γ(ω, 1)

Γ(4, ω) . .
. . . . Γ(ω, 2)

Γ(5, ω) Γ(ω, 3)

. . . . .
.

Γ(ω, ω)

= Γ(1,m) = Grz.3

= Grz.2

= Mdv

Thank you!
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