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Prehistory: future modality in Minkowski spacetime

Causal � and chronological ≺ future relations in Minkowski spacetime Rn:

(x1, . . . , xn) � (y1, . . . , yn) ⇔
n−1∑
i=1

(yi − xi )
2 ≤ (xn − yn)2 & xn ≤ yn,

(x1, . . . , xn) ≺ (y1, . . . , yn) ⇔
n−1∑
i=1

(yi − xi )
2 < (xn − yn)2 & xn < yn.

The causal future of a point-event x consists of all those points y , to which a signal
from x can be sent; x ≺ y if this signal is slower than light.

Goldblatt, 1980; Shehtman, 1983: For n ≥ 2, the modal logic of (Rn,�) is S4.2.

Hence, Log(Rn,�) has the finite model property, finitely axiomatizable, and so
decidable (moreover, PSPACE-complete due to Ladner, 1977 and Spaan, 1993).

Shehtman & Sh, 2002: The finite axiomatization and the fmp of ≺.
Sh, 2004: PSPACE-completeness.

Hirsch&Reynolds, 2018: PSPACE-completeness for the logic of (R2,�,�).
Hirsch&McLean, 2018: PSPACE-completeness for the logic of (R2,≺,�).

The structure (R2,�) is isomorphic to the direct square of (R,≤).
Likewise, (R2,≺) is isomorphic to the direct square of (R, <).

This talk:

The logics of direct powers of (ω,≤) and (ω,<).
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This talk is about
modal logics of direct products of Kripke frames,
their finite model property,
and local finiteness.
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Preliminaries

Language: a countable set Var (propositional variables), Boolean connectives,
a unary connective ♦ (� abbreviates ¬♦¬).

Normal modal logics: Definition 1

A set of modal formulas L is a normal
modal logic if L contains

all tautologies

♦⊥ ↔ ⊥, ♦(p ∨ q) ↔ ♦p ∨♦q
and is closed under MP, Sub, and Mon:
if (ϕ→ ψ) ∈ L, then (♦ϕ→ ♦ψ) ∈ L.

Normal modal logics: Definition 2

A modal algebra is a BA endowed with
a unary operation that distributes over
finite disjunctions.

A set of modal formulas L is a normal
modal logic if L is the logic of a modal
algebra A, i.e., L = {ϕ | A � ϕ = >}.
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finite disjunctions.

A set of modal formulas L is a normal
modal logic if L is the logic of a modal
algebra A, i.e., L = {ϕ | A � ϕ = >}.

Kripke semantics

A (Kripke) frame F is a pair (W ,R), where W 6= ∅, R ⊆W ×W .
A model M on F is a pair (F , θ) where θ : Var→ P(W ).

M, x � p iff x ∈ θ(p), M, x � ♦ϕ iff M, y � ϕ for some y with xRy .

Log(F )= {ϕ | F � ϕ}, where M, x � ϕ for every M on F and every x in M.

The algebra Alg(F ) of a frame F = (W ,R) is the modal algebra (P(W ),R−1).

Hence: F � ϕ iff Alg(F ) � ϕ = >.

4 / 17



Preliminaries

Language: a countable set Var (propositional variables), Boolean connectives,
a unary connective ♦ (� abbreviates ¬♦¬).

Normal modal logics: Definition 1

A set of modal formulas L is a normal
modal logic if L contains

all tautologies

♦⊥ ↔ ⊥, ♦(p ∨ q) ↔ ♦p ∨♦q
and is closed under MP, Sub, and Mon:
if (ϕ→ ψ) ∈ L, then (♦ϕ→ ♦ψ) ∈ L.

Normal modal logics: Definition 2

A modal algebra is a BA endowed with
a unary operation that distributes over
finite disjunctions.

A set of modal formulas L is a normal
modal logic if L is the logic of a modal
algebra A, i.e., L = {ϕ | A � ϕ = >}.

A logic L has the finite model property if L is the logic of a class C of finite
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⋂
{Log(F ) | F ∈ C}.

An algebra A is locally finite if every finitely generated subalgebra of A is finite.

Alg(F ) is locally finite ⇒ Log(F ) has the finite model property
:
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Characterization of locally finite frame algebras: Franzen’s filtrations

Let F = (W ,R) be a frame. A partition A of
W is tuned if for every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition
A of F admits a finite tuned refinement.

The key tool: The algebra of F is locally finite iff F is tunable.
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∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition
A of F admits a finite tuned refinement.

The key tool: The algebra of F is locally finite iff F is tunable.

TFAE:

A is tuned in F

The equivalence ∼ defined by A = W /∼ satisfies the condition

∼ ◦R ⊆ R◦ ∼,

i.e., ∼ is a bisimulation w.r.t. R on W .

x 7→ [x]A if a p-morphism from F onto the “Franzen’s filtration” (A,RA),
where for U,V ∈ A,

URAV iff ∃u ∈ U ∃v ∈ V uRv

[Segerberg, K.: Franzen’s proof of Bull’s theorem. Ajatus 35, 216–221 (1973)]

Finite unions of elements of A form a subalgebra of Alg(F ).
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F is said to be tunable if every finite partition
A of F admits a finite tuned refinement.

The key tool: The algebra of F is locally finite iff F is tunable.

Example: The logics/algebras of (ω,≤) and (ω,<)

Bull, 1965; Schindler, 1970/Segerberg, 1970: Log(ω,≤) and Log(ω,<)
have the fmp.

Moreover, the algebras Alg(ω,≤) and Alg(ω,<) are locally finite, since
(ω,≤) and (ω,<) are (easily!) tunable:

refine a given finite partition A of ω in such a way that

all elements of the refinement B are infinite or singletons, and

singletons form an initial segment of ω.
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A logic L is locally finite (or locally tabular) if for all k < ω there are only
finitely many k-formulas (i.e., formulas in k variables) up to ↔L.

TFAE:

L is locally finite. Every finitely
generated
Lindenbaum-Tarski
(i.e., free) algebra of
L is finite.

The variety of
L-algebras is locally
finite, i.e., every
finitely generated
L-algebra is finite.
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Characterization of locally finite frame algebras: Franzen’s filtrations

Let F = (W ,R) be a frame. A partition A of
W is tuned if for every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition
A of F admits a finite tuned refinement.

The key tool: The algebra of F is locally finite iff F is tunable.

A logic L is locally finite (or locally tabular) if for all k < ω there are only
finitely many k-formulas (i.e., formulas in k variables) up to ↔L.

Malcev, 1970s: The variety Var(A) of a finite signature is LF iff there
exists f : ω → ω s.t. the cardinality of a subalgebra of A generated by
m < ω elements is ≤ f (m).

Shehtman & Sh, 2016: Log(F ) is LF iff there exists f : ω → ω s.t. every
finite partition A of F admits a tuned finite refinement B with
|B| ≤ f (|A|).
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Alg(ω,≤) and Alg(ω,<) are locally finite.

Segerberg, 1971; Maksimova, 1975:
The logic of a transitive frame F is locally finite iff F is of finite height.

Log(F ) is LF ⇒ Alg(F ) is LF ⇒ Log(F ) has the FMP
: :

6 / 17



Main result

Alg(F ) is locally finite iff F is tunable

Example: Alg(ω,≤) and Alg(ω,<) are locally finite

Proof. The frames (ω,≤) and (ω,<) are tunable (easy).

(ωn,�) is the n-th direct power of (ω,≤), i.e., for x , y ∈ ωn

x � y iff x(i) ≤ y(i) for all i < n.

(ωn,≺) is the direct power (ω,<)n:
x ≺ y iff x(i) < y(i) for all i < n.

Theorem

For all finite n > 0, Alg(ωn,�) and Alg(ωn,≺) are locally finite.

Corollary

The logics Log(ωn,�) and Log(ωn,≺) have the finite model property.

7 / 17



Induction step
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Induction step?

Question

Let frames F1 and F2 be tunable. Is the direct product F1 × F2 tunable?

In the other words:
if Alg(F1) and Alg(F2) are LF, is the algebra Alg(F1 × F2) LF?

Proposition. For every ordinal α > 0, the algebras Alg(α,≤), Alg(α,<) are LF.

Proof. The frames (α,≤), (α,<) are tunable (an easy induction on α).

Conjecture

If (αi )i<n is a finite family of ordinals, then the algebras of the direct products∏
i<n(αi ,≤),

∏
i<n(αi , <) are locally finite.
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Question

Let n > 1. Are logics Log(ωn,�) and Log(ωn,≺) decidable or at least
recursively axiomatizable?

In the one-dimensional case, decidability is a classical result (Bull, 65;
Schindler, 1970; Segerberg, 1970).
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Every extension of a locally finite logic is locally finite, and so has the finite
model property.

The algebras of the frames (ωn,�) and (ωn,≺) are locally finite, the logics of
these frames are not (since these frames are of infinite height).

Bull, 1965: Every extension of Log(ω,≤) has the finite model property.

Question

Let L be an extension of Log(ωn,�) for some finite n > 1. Does L have the
finite model property?

A subframe of (W ,R) is the restriction (V ,R ∩ (V × V )), where V 6= ∅.

Proposition. If the algebra of a frame F is locally finite, then the algebra of any
subframe of F is also locally finite.

Proof. Given a partition A of a subframe G , consider the partition
A ∪ {W \V } of F . Tune it, and collect elements that are subsets of G .

Corollary

For all finite n, if F is a subframe of (ωn,�) or of (ωn,≺), then Alg(F ) is
locally finite, and Log(F ) has the finite model property.
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A spinoff: Local finiteness and Glivenko’s theorem

(Glivenko, 1929) CL ` ϕ iff IL ` ¬¬ϕ
(Matsumoto, 1955) S5 ` ϕ iff S4 ` ¬�¬�ϕ

In Kripke semantics:

IL is the logic of partial orders,
CL is the logic of singletons, which are partial orders of height 1.

S4 is the logic of preorders,
S5 is the logic of equivalence relations, which are preorders of height 1.

Let L[h] be the extension of a logic L with the axiom of height h.

IL[1] ` ϕ iff IL ` ¬¬ϕ S4[1] ` ϕ iff S4 ` ♦�ϕ

IL[2] ` ϕ iff IL ` ? S4[2] ` ϕ iff S4 ` ?

IL[3] ` ϕ iff IL ` ? S4[3] ` ϕ iff S4 ` ?

. . . . . .
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Let L[h] be the extension of a logic L with the axiom of height h.

IL[1] ` ϕ iff IL ` ¬¬ϕ S4[1] ` ϕ iff S4 ` ♦�ϕ

IL[2] ` ϕ iff IL ` ? S4[2] ` ϕ iff S4 ` ?

IL[3] ` ϕ iff IL ` ? S4[3] ` ϕ iff S4 ` ?

. . . . . .
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Formulas and logics of finite height

intermediate: bi
0 = ⊥, bi

i+1 = pi+1 ∨ (pi+1 → bi
i )

modal: b0 = ⊥, bi+1 = pi+1 → �(♦pi+1 ∨ bi )

L[h] extends L with the formula of height h. In particular,

IL[1] = CL, S4[1] = S5

The k-canonical frame of a logic L (the representation of the k-generated free
algebra of L) is built from maximal L-consistent sets of k-formulas.

Shehtman, 1978: Let k < ω. There exist formulas Bh,k (and their intuitionistic
analogs Bi

h,k) such that for every x in the k-canonical frame Fk of S4 (of Int)

Bh,k ∈ x ⇐⇒ the depth of x in Fk is less than or equal to h.

Theorem

Let k < ω. For all k-formulas ϕ we have:

IL[h + 1] ` ϕ iff IL `
∧

i≤h((ϕ→ Bi
i,k)→ Bi

i,k);

S4[h + 1] ` ϕ iff S4 `
∧

i≤h(�(�ϕ→ Bi,k)→ Bi,k).

In particular, for h = 0 the formulas B0,k are ⊥ for all k < ω:

IL[1] ` ϕ iff IL ` ¬¬ϕ, S4[1] ` ϕ iff S4 ` ♦�ϕ.
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Translations for non-transitive and polymodal cases

Analogs of the above translations exist whenever finite-height extensions of a
logic are locally finite.

Segerberg, 1971; Kuznetsov, 1971; Komori, 1975: All S4[h], IL[h] are LF.

A logic is said to be k-finite if, up to the equivalence in it, there exist only
finitely many k-formulas.
Hence, a logic is locally finite iff it is k-finite for every finite k.

L is pretransitive if there is a formula ♦∗(p) (‘master modality’) s.t. ♦∗(ϕ)
expresses the satisfiability of ϕ in cones on models of L.

Pretransitive examples:

K4,GL,wK4 = [♦♦p → ♦p ∨ p], K5 = [♦p → �♦p], [♦np → ♦mp] for
n > m, (expanding) products of transitive logics

Shetman, Sh, 2016: Every 1-finite (a fortiori, locally finite) modal logic is a
pretransitive logic of finite height.

Makinson, 1981: In general, the converse is not true!
There exists a pretransitive L s.t. none of the logics L[h], h > 0, are 1-finite:
put L = [♦3p → ♦2p].
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The height of a polymodal frame (W , (Ri )i<n) is the height of the preorder
(W , (

⋃
i<n Ri )

∗).
In the pretransitive case, the formulas of finite height can be defined:
B0 = ⊥, Bh = ph → �∗(♦∗ph ∨ Bh−1).

Theorem

Let L be a pretransitive logic, h, k < ω. If L[h] is k-finite, then:

(a) For every i ≤ h, there exists a formula Bi,k such that Bi,k ∈ x iff the
depth of x in the k-canonical frame of L is less than or equal to i .

(b) For all k-formulas ϕ,

L[h + 1] ` ϕ iff L `
∧
i≤h

(�∗(�∗ϕ→ Bi,k)→ Bi,k).

Remark. The inconsistent logic L[0] is locally finite, hence for every
pretransitive L

L[1] ` ϕ iff L ` ♦∗�∗ϕ (1)

Kudinov, Sh, 2011: A more direct (syntactic) proof of (1).

Contrary to the transitive case, k-finiteness of L[h] depends on
h and k .
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k-finiteness ⇒ local finiteness?

Maksimova, 1975:
A unimodal transitive logic is locally finite iff it is 1-finite.

Esakia, 1970s:
Does this equivalence hold for all modal logics?

Shehtman & Sh, 2016:
This equivalence holds for many families of modal logics.

But it does not hold in general...

Theorem

There exists a unimodal 1-finite logic which is not locally finite.

Proof.

Let F = (ω + 1,R), where xRy iff x ≤ y or x = ω.
1-finiteness of the logic of F is a straightforward exercise.
Recall: If the logic of a frame is LF, then the logic of any its subframe is LF.
The restriction of the cluster (ω + 1,R) onto ω is the frame (ω,≤), which is of
infinite height. Thus Log (ω + 1,R) is not locally finite.

Corollary. There exists a unimodal 1-finite algebra which is not locally finite.

Proof. Consider free algebras of a non-locally finite, but 1-finite logic.
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1-finiteness does not imply local finiteness.

Question

Does 2-finiteness of a modal logic imply local finiteness?
At least, does k-finiteness imply local finiteness, for some fixed k for all modal
logics? For modal algebras?

The same questions are open in the intuitionistic case.

Thank you!
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