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Sums of relational structures

Given a family (Fi : i in I) of relational structures (of the same signature)
indexed by elements of another structure I, the sum of Fi ’s over I is obtained
from their disjoint union by connecting elements of i-th and j-th distinct
components according to the relations in I.

Many important modal systems can by characterized as logics of sums
considered as Kripke frames.

Aim:

To study modal logics of sums via logics of summands.

Not a new approach:

“Composition theorems” reduce the theory of a compound structure to theories
(first-order, MSO) of components ([Mostowski, 1952], [Feferman–Vaught,
1959], [Shelah, 1975], [Gurevich, 1979], ...)
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Fusions, or independent joins

For logics L1, L2 in disjoint modal vocabularies A,B,
L1 ∗ L2 is the smallest logic in the vocabulary A ∪ B, containing L1 ∪ L2.

[Kracht and Wolter, 1991; Fine and Schurz, 1996]:
If L1 = LogF , L2 = Log G, where F and G are classes of frames closed under
disjoint unions, then L1 ∗ L2 is the logic of the class
{(W , (Ra)a∈A, (Sb)b∈B) : (W , (Ra)a∈A) ∈ F and (W , (Sb)b∈B) ∈ G}
In particular: if L1 and L2 have the FMP, then L1 ∗ L2 has the FMP.

[Wolter, 1998]: If L1 and L2 are decidable, then L1 ∗ L2 is decidable.

Modal products

The product of two (unimodal, for simplicity) frames:
(W ,R)× (V ,S) = (W ,R×, S×), where
(w1, v1)R×(w2, v2) if w1Rw2 and v1 = v2,
(w1, v1)S×(w2, v2) if w1 = w2 and v1Sv2.

L1 × L2 is the logic of the class {F× G : F |= L1 and G |= L2}.
[Gabelaia, Kurucz, Wolter and Zakharyaschev, 2005]:
S4× S4 is undecidable and lack the FMP.
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In many cases, the sum operation preserves decidability/the finite model
property/complexity of modal logics.

4 / 20



Three examples

[Ladner, 1977] S4, the modal logic of quasiorders, is in PSPACE.

[Folklore?] wK4, the logic of weakly transitive frames xRzRy ⇒ xRy ∨ x = y ,
is in PSPACE.

[Sh, 2008] Japaridze’s polymodal provability logic GLP is in PSPACE.

An explanation:

The above decision problems are polynomial space Turing reducible to modal
satisfiability problems on “simple” structures:

SAT{Quasiorders} ≤PSPACE
T SAT{frames of form (W ,W ×W )}

(or dually, S4 ≤PSPACE
T S5)

SAT{weakly transitive frames} ≤PSPACE
T SAT{frames of form (W , 6=)}

(in other words, wK4 ≤PSPACE
T difference logic DL)

For GLP, these structures are even simpler:
the oracle is the satisfiability problem on a single singleton

(hence, GLP ≤PSPACE
T classical propositional logic)

General phenomenon:

The modal satisfiability problem on sums over finite/Noetherian orders is
≤PSPACE

T -reducible to the modal satisfiability problem on summands.
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Sums of frames: unimodal case

Sum of two frames

For F1 = (W1,R1), F2 = (W2,R2), W1 ∩W2 = ∅,

F1 + F2 = (W1 ∪W2,R1 ∪ R2 ∪ (W1 ×W2))

6 / 20



Sums of frames: unimodal case

Consider a family (Fi : i ∈ I) of frames indexed by elements of another frame I:
frame of indices I = (I , S);
frames-summands Fi = (Wi ,Ri ), i in I.

The sum of the family (Fi )i∈I over I is obtained from the disjoint union
⊔

i∈I Fi

by connecting elements of i-th and j-th distinct components according to I:

∑
i∈I

Fi =

(⊔
i∈I

Wi ,R

)
, where

(i ,w)R(j , v) iff i = j &wRiv or i 6= j & iSj .
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)
, where

(i ,w)R(j , v) iff i = j &wRiv or i 6= j & iSj .

For classes I, F ,
∑
I F is the class of all sums

∑
i∈I Fi such that I ∈ I and

Fi ∈ F for every i in I.

Aim:

To transfer “good” properties of components to the logic Log
∑
I F .
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A ≤PSPACE
T B if there exists a polynomial space bounded oracle deterministic

machine M with oracle B that recognizes A (it is assumed that every tape of
M, including the oracle tape, is polynomial space bounded).

F [∀] is the class of frames in F enriched with the universal relation:
F [∀] = {(W ,W ×W ,R) : (W ,R) ∈ F}

Theorem

Let F be a class of unimodal frames, I a class of Noetherian orders containing
all finite trees. Then

SAT
∑
I

F ≤PSPACE
T SATF [∀].

Remark on [∀]. Let L be a transitive logic (or, more generally, a logic where
transitive closure modality is expressible). If F a class of all (finite, or rooted,
or finite rooted) frames of L, then SATF [∀] ≤PSPACE

T SATF . (In fact, the
reduction is stronger than ≤PSPACE

T [Spaan, 1996].) Hence, in these cases

SAT
∑
I

F ≤PSPACE
T SATF .
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[Ladner, 1977] S4, the modal logic of quasiorders, is in PSPACE.

Proof via sums: Every quasiorder F is isomorphic to the sum∑
C∈skF

(C ,C × C)

of its clusters over its skeleton skF.

S4 has the finite model property, hence S4 is the logic of
∑

finite PO Clusters.

Almost trivial: SAT(Clusters) is in NP, hence is in PSPACE.

Thus, we have:

SAT(Quasiorders) ≤PSPACE
T SAT(Clusters) ∈ PSPACE.
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F = (W ,R) is weakly transitive if xRzRy ⇒ xRy ∨ x = y .
wK4 is the logic of weakly transitive frames.

[Folklore (?)] wK4, the logic of weakly transitive frames, is in PSPACE.

Proof via sums: wK4 has the FMP [Esakia, 1976 (2001); Shehtman, 2000].
Finite weakly transitive frames can be represented as

∑
finite PO F , where

(W ,R) is in F iff R contains the difference relations (an easy exercise).
A simple fact: SATF is in NP.

In topological semantics (♦ is for the derivation), wK4 is the logic of all
topological spaces.

[Bezhanishvili, Esakia, and Gabelaia, 2009] The logic of all T0-spaces is the
logic of finite weakly transitive frames where clusters contain at most one
irreflexive point.

Corollary This logic is in PSPACE.
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GL,Grz,wGrz are in PSPACE

Proof is immediate from Kripke completeness:

Indices: Noetherian orders. Summands: {•}, {◦}, {◦, •}, respectively.
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Example: Japaridze’s Polymodal Logic GLP and sums over Noetherian orders

GLP is Kripke incomplete. However:

Beklemishev, 2007: There exists a polynomial-time translation f such that

GLP ` ϕ iff f (ϕ) is valid on the class of hereditary partial orderings:

The logic J of hereditary partial orderings:

J�0 = propositional logic, J�1 = GL = LogNoeth,

J�2 = Log
lex∑

Noeth

Noeth, J�3 = Log
lex∑

Noeth

(
lex∑

Noeth

Noeth

)
, . . .

Sh, 2008: J (and so GLP) is in PSPACE.

The same idea of the proof: Like in the case of GL, frames of J are obtained
from a singleton via (iterated) sums over Noeth.
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Sums in polymodal case

Fix N ≤ ω and the N-modal signature {♦a : a < N}.

Frame of indices I = (I , (Sa)a<N);
frames-summands Fi = (Wi , (Ri,a)a<N), i in I.∑

i∈I

Fi = (ti∈IWi , (Ra)a<N) , where

(i ,w)Ra(j , v) iff i = j &wRi,av or i 6= j & iSaj .

13 / 20



Classes of N-frames F and G are said to be interchangeable, in symbols
F ≡ G, if F and G have the same modal logic in the language enriched with
the universal modality.
Formally, for an N-frame F = (W ,R0,R1, . . .), let F[∀] be the (1 + N)-frame
(W ,W ×W ,R0,R1, . . .). For a class F of N-frames, F [∀] = {F[∀] : F ∈ F}.
F ≡ G if LogF [∀] = Log G[∀].

Theorem (2018)

If F ≡ G, then
∑
I F ≡

∑
I G.

Hence, if F and G are interchangeable, then the logics of sums
∑
I F and∑

I G are equal; moreover, these classes of sums are interchangeable again,
thus we have Log

∑
J (
∑
I F) = Log

∑
J (
∑
I G) for any other class of

frames-indices J , and so on:

Corollary

If F ≡ G, then for any I1, . . . , Is we have
Log

∑
I1

. . .
∑
Is F = Log

∑
I1

. . .
∑
Is G.

Corollary

If LogF [∀] has the FMP, then for any classes I1, . . . , Is of finite frames the
logic of the class

∑
I1

. . .
∑
Is F has the FMP.
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Recall:

I = (I , (Sa)a<N); Fi = (Wi , (Ri,a)a<N), i in I.∑
i∈I

Fi = (ti∈IWi , (Ra)a<N) , where

(i ,w)Ra(j , v) iff i = j &wRi,av or i 6= j & iSaj .

a-sums

(Fi )i∈I is a family of N-frames, I = (I ,S) is a unimodal frame, a < N.

The a-sum
a∑

I
Fi is the sum

∑
I′

Fi , where I′ is the N-frame whose domain

is I , the a-th relation is S and other relations are empty.

Theorem (2008, 2018)

Let F be a class of N-frames, a ∈ N, I a class of Noetherian orders containing
all finite trees. Then

Log
a∑
Noeth

F = Log
a∑
FinTr

F = Log
a∑
I

F .

If also I is closed under finite disjoint unions, then

a∑
Noeth

F ≡
a∑
FinTr

F ≡
a∑
I

F .
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Theorem (main result)

Let L = Log
a0
∑
I0
. . .

as∑
Is
F , where

F is a class of N-frames, a0, . . . , as < N < ω,
FinTr ⊆ I0, . . . , Is ⊆ Noeth.
Then:

1 If LogF [∀] has the finite model property, then so does L:

L = Log
a0
∑

FinTr

. . .
as∑
FinTr

FinFrames LogF

2 A formula ϕ is L-satisfiable iff ϕ is satisfiable in

a0
∑

Tr(]ϕ)

. . .
as∑
Tr(]ϕ)

F ,

where Tr(]ϕ) is the class of transitive trees with height and branching ≤ ]ϕ.

3

SAT
a0
∑
I0

. . .
as∑
Is

F ≤PSPACE
T SATF [∀].

If also classes Ia are closed under finite disjoint unions, then

SAT (
a0
∑
I0

. . .
as∑
Is

F)[∀] ≤PSPACE
T SATF [∀].
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Concluding examples: lexicographic sums and products

N ≤ ω.
(Fi )i∈I is a family of N-frames, I = (I , S) is a unimodal frame.

The lexicographic sum
lex∑

I
Fi is the (1 + N)-frame

(
ti∈IWi ,S

lex, (Ra)a<N

)
, where

(i ,w)Slex(j , u) iff iSj ,

(i ,w)Ra(j , u) iff i = j & wRi,au.

Example. S0 = ({0}, ()) is a singleton frame in the 0-modal language.

For a < ω, the a-modal fragment of J is characterized by
lex∑

Noeth

. . .
lex∑

Noeth︸ ︷︷ ︸
a times

{S0}

For F = (W , (Ra)a<N), let F[∅] be the (1 + N) frame (W ,∅, (Ra)a<N).

Simple fact. If I is irreflexive, then
lex∑

I
Fi =

∑
(I ,S,∅,∅,...) F

[∅]
i =

0∑
I
F

[∅]
i .

If I is reflexive, then
lex∑

I
Fi =

∑
(I ,S,∅,∅,...) F

[∀]
i =

0∑
I
F

[∀]
i .

Corollary. For all a < ω, SAT (
lex∑

Noeth

. . .

lex∑
Noeth︸ ︷︷ ︸

a times

{S0})[∀] is in PSPACE.
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Concluding examples: lexicographic sums and products

The lexicographic product IhF is the is the sum
lex∑

I
Fi , where Fi = F for all i in I.

For a class I of 1-frames and a class G of N-frames, the class I hF is the class of
products IhF s.t. I ∈ I and F ∈ F .
For logics L1, L2, L1 h L2= Log (Frames L1 h Frames L2); likewise for sums.

α = ♦0♦1p → ♦0p, β = ♦1♦0p → ♦0p, γ = ♦0p → �1♦0p.

[Balbiani, 2009] S4hS4 = S4 ∗ S4 + {α, β, γ}.

[Beklemishev, 2007] Log
lex∑
GL

GL= GL ∗GL + {α, β, γ}.

[Sh, 2016] (1) If L is canonical, then
lex∑
GL

L = GL ∗ L + {α, β, γ}.

(2) If L1 ∗ L2 + {α, β, γ} is Kripke complete, and L1 is first-order definable without

equality, then
lex∑
L1

L2 = L1 ∗ L2 + {α, β, γ}.

FinQO denotes finite quasiorders. C denotes finite frames of form (W ,∅,W ×W ).

[Sh, 2018] S4hS4 and GLhS4 have the fmp, moreover — product/sum fmp:

S4hS4 =
lex∑
S4

S4 = Log
0∑

FinTr
FinQO[∀]

GLhS4 =
lex∑
GL

S4 = Log
0∑

FinTr

1∑
FinTr

C.

Corollary S4hS4 and GLhS4 are PSPACE-complete.
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Further results/directions:

Further FMP results

For lexicographic sums and products, filtrations can be reconstructed from
filtrations on indices/summands.

[Babenyshev and Rybakov, 2010] introduced a refinement operation on modal
logics and proved that it keeps filtrability. In fact, refinements are special cases
of lexicographic sums.

More complexity

In the linear case, modal products are usually undecidable [Reynolds and
Zakharyaschev, 2001]. However: SAT for the lexicographic square of dense
unbounded linear orders is in NP [Balbiani and Mikulás, 2011].

This positive result seems to be scalable. Filtrations give FMP, and also we have
the following fact: ϕ is satisfiable in sums over finite linear (quasi)orders iff ϕ is
satisfiable in such sums with the size of orders ≤ ]ϕ.

Transferring other properties

Conjecture. Local finiteness is preserved under lexicographic sums (a fortiori —
under lexicographic products).

Sums of weaker modal systems (e.g., of positive fragments of modal logics).

Sums of stronger modal-like systems

[Balbiani and Fernández-Duque, 2016]: axiomatizations of lexicographic
products with (a fragment) of linear temporal logic.

Sum-based operations in the Kripke-incomplete case

Logics of sums are Kripke complete. What could be the definition of sums for
modal algebras (general Kripke frames)?

E..g., can we approximate GLP by sums like
∑

Noeth
. . .
∑

Noeth
F0?
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Sum-based operations seem to provide a nice way of combining modal logics.

Thank you!
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