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Modal language and relational (Kripke) semantics

Modal language

The set of n-modal formulas is built from a countable set of propositional variables
PV = {po, p1, ...} using Boolean connectives and unary connectives {;, i < n
(modalities).

Kripke semantics

An n-frame F: (X, (R;)i<n). where R; are binary relations on a set X.
A model M on F is a pair (F,6) where 6 : VAR — P(X).

M,xE piff x € 0(p), M,xE Oipiff M,y E ¢ for some y with xR;y.

A formula ¢ is true in a model M, in symbols M E ¢, if M, x F ¢ for all x in M.
A formula ¢ is valid in a frame F, in symbols F F ¢, if ¢ is true in every model on F.

Examples (Unimodal case)

R is reflexive;

R is symmetric (¢ denotes ~O—¢);
Vx3dy xRy;

(X, R™1) is a well-founded strict poset.

(X,R)Ep—Op

(X,R)E p—DO0p
(X;R)E QT

(X,R) EOp — O(p A —Op)

[
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The set of n-modal formulas is built from a countable set of propositional variables
PV = {po, p1, ...} using Boolean connectives and unary connectives {;, i < n
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Kripke semantics

An n-frame F: (X, (R;)i<n). where R; are binary relations on a set X.
A model M on F is a pair (F,6) where 6 : VAR — P(X).

M,xE piff x € 0(p), M,xE Oipiff M,y E ¢ for some y with xR;y.

A formula ¢ is true in a model M, in symbols M E ¢, if M, x F ¢ for all x in M.
A formula ¢ is valid in a frame F, in symbols F F ¢, if ¢ is true in every model on F.

Example (Bimodal case)

Consider a structure (X, R, X x X), R is symmetric.
R interprets (o, the universal relation X x X interprets Oy.

We have:
(X, R, X X X)E C1p A OQ1—p = O1(p A Qo—p) <—
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A formula ¢ is valid in a frame F, in symbols F F ¢, if ¢ is true in every model on F.

Example (Bimodal case)

Consider a structure (X, R, X x X), R is symmetric.
R interprets (o, the universal relation X x X interprets Oy.

We have:
(X, R, X X X)E C1p A O1—p — O1(p A Qo—p) < (X, R) is connected.
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Chromatic number of a graph

A graph is a unimodal frame (X, R) in which R is symmetric. A directed graph is a
unimodal frame.
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Chromatic number of a graph

A graph is a unimodal frame (X, R) in which R is symmetric. A directed graph is a
unimodal frame.

As usual, a partition A of a set X is a family of non-empty pairwise disjoint sets such
that X = J A.

Definition
Let X be a set, R C X x X. A partition (in other terms: coloring) A of X is proper, if
VA € AVx € AVy € A —xRy.
The chromatic number x(X, R) of (X, R) is the least k in the set
{|A] : Ais a finite proper partition of X}
(if the set is empty, x(X, R) = c0.)

Figure: Wikipedia/Graph coloring
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Formulas of non-colorability

For a unimodal frame F = (X, R), let F; be the bimodal frame (X, R, #x), where #x
is the inequality relation on X, i.e., the set of pairs (x,y) € X x X such that x # y.

From now on, we write O for (g, and (#) for O1; likewise for boxes.
We also use abbreviations 3y for (#)p V ¢ and Yy for [#]p A 4.

Put
xi =YV ein A =p)— 3\ (piA0p)
i<k i#j<k i<k
Proposition (Follows from [Hughes 1990])

The chromatic number of F > k iff Fx F x[ .
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Formulas of non-colorability

For a unimodal frame F = (X, R), let F; be the bimodal frame (X, R, #x), where #x
is the inequality relation on X, i.e., the set of pairs (x,y) € X x X such that x # y.

From now on, we write O for (g, and (#) for O1; likewise for boxes.
We also use abbreviations 3y for (#)p V ¢ and Yy for [#]p A 4.

Put
xi =YV ein A =p)— 3\ (piA0p)
i<k i#j<k i<k

Proposition (Follows from [Hughes 1990])

The chromatic number of F > k iff Fx F x[ .

Historical remark

In [Goldblatt, Hodkinson, Venema 2004], these formulas were used to construct a
canonical logic which cannot be determined by a first-order definable class of relational
structures; this gave a solution of a long-standing problem [Fine 1975].
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Modal logics

For a class C of frames, the set LogC = {¢ | C F ¢} is called the logic of C.

General problems

e complete axiomatization of LogC;
e decidability of LogC.
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Modal logics

For a class C of frames, the set LogC = {¢ | C F ¢} is called the logic of C.

General problems
e complete axiomatization of LogC;

e decidability of LogC.

Definitions

A set L of formulas is a modal logic (in a more accurate terminology — normal
propositional modal logic), if L contains the classical tautologies, the formulas

Oil < L, 0i(pVvq) < OipVOiqg (i<n),

and is closed under the rules of MP, substitution and
monotonicity: if (¢ — ) € L, then (O;p — Oi9) € L.

A logic L is Kripke complete, if L is the logic of a class C of Kripke frames: L = LogC.

A logic L has the finite model property, if L is the logic of a class C of finite frames.

Fact

If L has the fmp and is finitely axiomatizable, then it is decidable.
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Logics of non-k-colorable graphs

K is the least unimodal logic. KB is the least unimodal logic that contains the
formula p — OOp (recall: the formula expresses symmetry of relation).

Facts.K is the logic of all (finite) unimodal frames;
KB is the logic of all (finite) graphs (symmetric unimodal frames).
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p— [Z(F)p, (F)(F)p—3Ip, Op—Ip.

[De Rijke 1992]. K is the logic of the class of (finite) frames of the form (X, R, #x).
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p— [Z(F)p, (F)(F)p—3Ip, Op—Ip.

[De Rijke 1992]. K is the logic of the class of (finite) frames of the form (X, R, #x).

Theorem
1. Let G>* be the class of graphs G such that x(G) > k, and let D>* be the class of
directed graphs G such that x(G) > k. Then

Log Q;k is KBy + x;, and Log D;k is Ko+ xp -

2. For each k < w, the logics KB + x; and K + x; have the exponential finite
model property and are decidable.
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K is the least unimodal logic. KB is the least unimodal logic that contains the
formula p — OOp (recall: the formula expresses symmetry of relation).
Facts.K is the logic of all (finite) unimodal frames;

KB is the logic of all (finite) graphs (symmetric unimodal frames).

For a unimodal logic L, let L be the smallest bimodal logic that contains L and

p— [Z(F)p, (F)(F)p—3Ip, Op—Ip.

[De Rijke 1992]. K is the logic of the class of (finite) frames of the form (X, R, #x).

Theorem

1. Let G>* be the class of graphs G such that x(G) > k, and let D>* be the class of
directed graphs G such that x(G) > k. Then

Log Q;k is KBy + x;, and Log D;k is Ko+ xp -

2. For each k < w, the logics KB + x; and K + x; have the exponential finite
model property and are decidable.

Update: A related result was obtained very recently in [Ding, Liu & Wang, 2023]:

it was shown that in neighborhood semantics of modal language, the non-k-colorability
of hypergraphs is expressible, and the resulting modal systems are decidable as well.

I am grateful to Gillman Payette for sharing with me this reference after my talk at
WolLLIC.
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Logics of non-k-colorable graphs: some extensions

A frame F = (X, R) is connected, if for any points x, y in X, there are points

X0 = X, X1,...,Xn = y such that for each i < n, x;Rx; 1 or x;11Rx;.
Let Con be the following formula:
Ip A3=p = 3(p A O-p). (1)

Recall: for every graph G,
G is connected iff G F Con.
Theorem

1. Let C>* be the class of non-k-colorable connected non-singleton graphs. Then
Log c;k is KB + {x7,Con, 0T}

2. All logics KB + {Xf, Con, OT} have the exponential finite model property and
are decidable.
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A few technical details and corollaries

normal modal logics 2
Kripke complete logics 2
logics with the finite model property 2
logics that admit filtration

Informally, filtration is a method of collapsing an infinite model into a finite one while
preserving the truth value of a given formula. It is widely used for establishing the
finite model property and decidability of modal logics.

A logic L admits filtration iff any L-model can be “filtrated” into a finite L-model.

Formally:
For a model M = (X, (Rj)i<n,0) and a set I of formulas, put
xr~py iff Vi €T (M, x = o iff M,y = ).
A T-filtration of M is a model M = (X, (R;)i<n, 0) such that:
X = X/~ for some equivalence relation ~ finer than ~r;
M,[x] = piff M,x = pforall pecT.
For all i < n, we have (R;)., C R C (R)",, where
KR) Iyl iff 3x ~x 3Ty ~y (X Ry,
IR)L Y] iff Vo (O ET& M,y k= ¢ = M,x | Oi9h).

If ~ = ~y for some finite set of formulas W D T, then M is called a definable T-filtration of M.
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A few technical details and corollaries

A logic L admits (rooted) definable filtration, if for any (point-generated) model M
with I\/If L, andAfor any finite subformula-closed set of formulas I', there exists a finite
model M with M & L that is a definable [-filtration of M.

It is well-known that many standard logics admit filtration and hence have the finite
model property.

Moreover, in many cases filtrability of a logic leads to the finite model property of
reacher systems.

For example, if a modal logic L admits definable filtration, then its enrichments with
modalities for the transitive closure and converse relations also admit definable
filtration (that is, you can build a PDL extension of such an L and keep the finite
model property) [Kikot, Zolin, Sh, 2014; 2020].
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with I\/If L, andAfor any finite subformula-closed set of formulas I', there exists a finite
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It is well-known that many standard logics admit filtration and hence have the finite
model property.

Moreover, in many cases filtrability of a logic leads to the finite model property of
reacher systems.

For example, if a modal logic L admits definable filtration, then its enrichments with
modalities for the transitive closure and converse relations also admit definable
filtration (that is, you can build a PDL extension of such an L and keep the finite
model property) [Kikot, Zolin, Sh, 2014; 2020].

Theorem

If a bimodal logic L admits definable filtration, then all L + Xf admit definable
filtration, and consequently have the finite model property.

Theorem

Assume that a bimodal logic L admits rooted definable filtration, k < w. Then L+ x
has the finite model property. If also L extends KB, then L + {x; , Con} has the
finite model property.
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Logics of certain graphs

Modal logics of different classes of non-k-colorable graphs are decidable. It is of
definite interest to consider logics of certain graphs, for which the chromatic number
is unknown.

Let F = (R?, R_1) be the unit distance graph of the real plane.
Hadwiger—Nelson problem (1950s)
What is x(F)?

It is known that 5 < x(F) < 7 ([< 7: Isbell, 1950s]; [5 <: Aubrey De Grey, 2018]).
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Logics of certain graphs

Modal logics of different classes of non-k-colorable graphs are decidable. It is of
definite interest to consider logics of certain graphs, for which the chromatic number
is unknown.

Let F = (R?, R_1) be the unit distance graph of the real plane.

Hadwiger—Nelson problem (1950s)

What is x(F)?

It is known that 5 < x(F) < 7 ([< 7: Isbell, 1950s]; [5 <: Aubrey De Grey, 2018]).
Let L_1 be the bimodal logic of the frame (R2, R—1, #p2).

In modal terms, the Hadwiger-Nelson problem asks whether x¢, xg belong to L_;.

We know that L_; extends L = KB_ + {x;,Con,0T,0p — (#)p} (the latter logic
is decidable). However, L—; contains extra formulas. For example, let

P(k,m,n)= N\ 0"0"p; — \/ 0"(pi A pj).
i<k i#j<k
For various k, m,n, P(k,m,n) is in L—1 (and not in L); this can be obtained from
known solutions for problems of packing equal circles in a circle.

Problem

Is L_1 decidable? Finitely axiomatizable? Recursively enumerable? Does it have the
finite model property?
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Let L_1 be the bimodal logic of the frame (R2, R—1, #p2).

In modal terms, the Hadwiger-Nelson problem asks whether x¢, xg belong to L_;.

Let V, C R? be a disk of radius r. It follows from de Bruijn—Erd&s theorem that if
Xx(F) > k, then x(V,, R=1) > k for some r.

Let L1 , be the unimodal logic of the frame F, = (V,, R=1) (r > 1). In this case, the
properties
x(F) > k
are expressible in the unimodal language.
Problem

To analyze the unimodal logics L—1 ,.
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Modal logics of different classes of non-k-colorable graphs are decidable. It is of
definite interest to consider logics of certain graphs, for which the chromatic number
is unknown.

Let F = (R?, R_1) be the unit distance graph of the real plane.
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What is x(F)?
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To analyze the unimodal logics L—1 ,.

Thank you!
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