On the finite model property of subframe pretransitive logics

Ilya Shapirovsky New Mexico State University

ASL 2024

Supported by NSF DMS - 2231414

Basic notions

Language: a countable set of variables VAR, Boolean connectives, and unary &'s

Normal modal logic

A set of modal A-formulas L is a *normal modal logic*, if for all diamonds \Diamond in the language, L contains

classical tautologies,

 $\Diamond \bot \leftrightarrow \bot$, $\Diamond (p \lor q) \leftrightarrow \Diamond p \lor \Diamond q$,

and is closed under MP, Sub, and *Mon*: if $(\varphi \rightarrow \psi) \in L$, then $(\Diamond \varphi \rightarrow \Diamond \psi) \in L$.

Kripke semantics

A (Kripke) frame F is a set X with binary relation(s) R_{\Diamond} . A model M on F is a pair (F, θ) where θ : VAR $\rightarrow \mathcal{P}(X)$.

 $M, x \vDash p$ iff $x \in \theta(p)$, $M, x \vDash \Diamond \varphi$ iff $M, y \vDash \varphi$ for some y with $xR_{\Diamond}y$.

 $Log(F) = \{\varphi \mid F \vDash \varphi\}$, where $F \vDash \varphi$ means that $M, x \vDash \varphi$ for all M on F and all x in M.

A logic *L* is *Kripke complete*, if *L* is the logic of a class *C* of Kripke frames: $L = \bigcap \{ Log(F) \mid F \in C \}.$

A logic *L* has the *finite model property*, if *L* is the logic of a class C of finite frames (algebras, models).

The *tense expansion* L_t of a Kripke-complete logic L is the bimodal logic of the class $\{(X, R, R^{-1}) \mid (X, R) \models L\}$.

We are interested in modal logics with expressible transitive reflexive closure modality. Such logics are said to be *pretransitive*. In terms of frames, this means that for some fixed finite m, in frames of the logic we have

$$R^{m+1} \subseteq \bigcup_{i\leq m} R^i$$
,

where R^0 is the diagonal, $R^{i+1} = R \circ R^i$, and \circ is the composition. We address this property as *m*-*transitivity*.

General problem

The finite model property of pretransitive logics and their tense expansions.

Numerous results are known for the case m = 1, only a few for m > 1...

m-transitivity: $R^{m+1} \subseteq \bigcup_{i < m} R^i$

$m=1:\ R^2\subseteq R^0\cup R$

[McKinsey, 1941] FMP of the logic S4 of all preorders $R^2 \cup R^0 \subseteq R$.

[Lemmon, 1966] FMP of the logic K4 of all transitive relations $R^2 \subseteq R$.

[Segerberg, 1970] FMP of the tense expansions (another diamond for the inverse relation) of K4, S4.

[Fine, 1985] FMP for the case when a class of transitive frames is closed under taking substructures (transitive *subframe* logics).

[...]

m-transitivity: $R^{m+1} \subseteq \bigcup_{i < m} R^i$

$m=1:\ R^2\subseteq R^0\cup R$

[McKinsey, 1941] FMP of the logic S4 of all preorders $R^2 \cup R^0 \subseteq R$.

[Lemmon, 1966] FMP of the logic K4 of all transitive relations $R^2 \subseteq R$.

[Segerberg, 1970] FMP of the tense expansions (another diamond for the inverse relation) of $\rm K4,\,S4.$

[Fine, 1985] FMP for the case when a class of transitive frames is closed under taking substructures (transitive *subframe* logics).

[...]

[G. Bezhanishvili & Esakia & Gabelaia, 2011] FMP of the logic $w\mathrm{K4}$ of all 1-transitive relations...

[G. Bezhanishvili & Ghilardi & Jibladze, 2011] ... and its subframe extensions.

[Ma & Chen, 2023] FMP for the tense expansion of wK4.

m-transitivity: $R^{m+1} \subseteq \bigcup_{i < m} R^i$

$m=1:\ R^2\subseteq R^0\cup R$

[McKinsey, 1941] FMP of the logic S4 of all preorders $R^2 \cup R^0 \subseteq R$.

[Lemmon, 1966] FMP of the logic K4 of all transitive relations $R^2 \subseteq R$.

[Segerberg, 1970] FMP of the tense expansions (another diamond for the inverse relation) of $\rm K4,\,S4.$

[Fine, 1985] FMP for the case when a class of transitive frames is closed under taking substructures (transitive *subframe* logics).

[...]

[G. Bezhanishvili & Esakia & Gabelaia, 2011] FMP of the logic $w\mathrm{K4}$ of all 1-transitive relations...

[G. Bezhanishvili & Ghilardi & Jibladze, 2011] ... and its subframe extensions. [Ma & Chen, 2023] FMP for the tense expansion of wK4.

m > 1

For m > 1, the FMP of the logic of all *m*-transitive relations is a Big Open Problem.

FMP is known for the following subclasses of *m*-transitive frames:

[Gabbay, 1972] $R^{m+1} \subseteq R$ (*m*-transitive analogs of K4);

[Kudinov & Sh, 2015] FMP of the logics of *m*-transitive relations with bounded height of their skeletons;

[Kudinov & Sh, 2023] FMP of the logics L_m of relations with $R^{m+1} \subseteq R^0 \cup R$ (*m*-transitive analogs of wK4) and for tense expansions of L_m ; FMP of subframe extensions of L_m ...

[Dvorkin, 2024] ... and actually for subframe *m*-transitive logics weaker than L_m .

Remark. Except for logics in [Kudinov & Sh, 2015], the logics are subframe.

Strategy

```
Given a model M \vDash L and a formula \varphi satisfiable in M, we want to construct a finite model \widehat{M} such that

\widehat{M} \vDash L, and

\varphi is satisfiable in \widehat{M}.
```

Two standard approaches

```
Filtrations in the style of Lemmon-Scott-Segerberg, or epi-filtrations: \widehat{M} is a quotient (of special kind) of M.
```

Selective filtrations:

 \widehat{M} is a submodel (of special kind) of M.

Transfer results

In many cases, the proof of the FMP of L results in the FMP for other systems.

In the case of selective filtrations, one might expect FMP for subframe extensions of L [Fine, 1985].

In the case of epi-filtrations, FMP transfers to the tense (and some other) expansion of L [Kikot & Zolin & Sh, 2014].

Any set of formulas Γ on a model M induces an equivalence \sim_{Γ} on M. Any equivalence \sim finer than \sim_{Γ} induces two relations: the *minimal* filtered relation R_{\sim} (depends on \sim only), and the *maximal filtered relation* $R_{\sim,\Gamma}$ (depends on \sim and Γ).

For a finite Γ , and a model M of the logic L, the goal is:

- (1) to find a finite index refinement \sim of \sim_{Γ} ,
- (2) and then to find \widehat{R} between R_{\sim} and $R_{\sim,\Gamma}$ which gives a model \widehat{M} of *L*.

A class \mathcal{F} of frames *admits filtration* if, for every finite Sub-closed set of formulas Γ and every \mathcal{F} -model M, there exists a finite filtration \widehat{M} of M through Γ based on a frame in \mathcal{F} .

[Lemmon, 1966] If a class \mathcal{F} admits filtration, then $\operatorname{Log}(\mathcal{F})$ has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class ${\cal F}$ admits filtration, then the tense expansion ${\rm Log}_t({\cal F})$ has the fmp.

Formal definition of epifiltration (bonus track)

Put $a \sim_{\Gamma} b$ iff $\forall \psi \in \Gamma(M, a \models \psi \Leftrightarrow M, b \models \psi)$ Let Γ be a subformula-closed set of formulas, $M = (X, R, \theta)$ a model. An *(epi)filtration of M through* Γ is a model $\widehat{M} = (\widehat{X}, \widehat{R}, \widehat{\theta})$ such that: (a) $\widehat{X} = X/\sim$ for some \sim that refines \sim_{Γ} ; (b) $\widehat{M}, [a] \models p$ iff $M, a \models p$ for variables $p \in \Gamma$; (c) $R_{\sim} \subseteq \widehat{R} \subseteq R_{\sim,\Gamma}$, where $[a] R_{\sim} [b]$ iff $\exists a' \sim a \exists b' \sim b (a' R b')$, $[a] R_{\sim,\Gamma} [b]$ iff $\Diamond \varphi \in \Gamma \& M, b \models \varphi \Rightarrow M, a \models \Diamond \varphi$

Any set of formulas Γ on a model M induces an equivalence \sim_{Γ} on M. Any equivalence \sim finer than \sim_{Γ} induces two relations: the *minimal* filtered relation R_{\sim} (depends on \sim only), and the *maximal filtered relation* $R_{\sim,\Gamma}$ (depends on \sim and Γ).

For a finite Γ , and a model M of the logic L, the goal is:

- (1) to find a finite index refinement \sim of \sim_{Γ}
- (2) and then to find \widehat{R} between R_{\sim} and $R_{\sim,\Gamma}$ which gives a model \widehat{M} of L.

A class \mathcal{F} of frames *admits filtration* if, for every finite Sub-closed set of formulas Γ and every \mathcal{F} -model M, there exists a finite filtration \widehat{M} of M through Γ based on a frame in \mathcal{F} .

[Lemmon, 1966] If a class \mathcal{F} admits filtration, then $\operatorname{Log}(\mathcal{F})$ has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class ${\cal F}$ admits filtration, then the tense expansion ${\rm Log}_t({\cal F})$ has the fmp.

The most standard application of the method:

 \sim is \sim_{Γ} .

For example, for the case of transitive frames, the transitive closure of the minimal filtered relation $R_{\sim\Gamma}$ gives a filtration.

In general, letting the equivalence \sim be finer than \sim_{Γ} gives much more flexibility.

Any set of formulas Γ on a model M induces an equivalence \sim_{Γ} on M. Any equivalence \sim finer than \sim_{Γ} induces two relations: the *minimal* filtered relation R_{\sim} (depends on \sim only), and the *maximal* filtered relation $R_{\sim,\Gamma}$ (depends on \sim and Γ).

For a finite Γ , and a model M of the logic L, the goal is:

- (1) to find a finite index refinement \sim of \sim_{Γ} ,
- (2) and then to find \widehat{R} between R_{\sim} and $R_{\sim,\Gamma}$ which gives a model \widehat{M} of *L*.

A class \mathcal{F} of frames *admits filtration* if, for every finite Sub-closed set of formulas Γ and every \mathcal{F} -model M, there exists a finite filtration \widehat{M} of M through Γ based on a frame in \mathcal{F} .

[Lemmon, 1966] If a class \mathcal{F} admits filtration, then $\operatorname{Log}(\mathcal{F})$ has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class ${\cal F}$ admits filtration, then the tense expansion ${\rm Log}_t({\cal F})$ has the fmp.

Recall: L_m is the logic of frames s.t. $R^{m+1} \subseteq R^0 \cup R$.

Theorem [Kudinov & Sh]

The class of L_m -frames admits filtration.

Any set of formulas Γ on a model M induces an equivalence \sim_{Γ} on M. Any equivalence \sim finer than \sim_{Γ} induces two relations: the *minimal* filtered relation R_{\sim} (depends on \sim only), and the *maximal filtered relation* $R_{\sim,\Gamma}$ (depends on \sim and Γ).

For a finite Γ , and a model M of the logic L, the goal is:

- (1) to find a finite index refinement \sim of \sim_{Γ} ,
- (2) and then to find \widehat{R} between R_{\sim} and $R_{\sim,\Gamma}$ which gives a model \widehat{M} of *L*.

A class \mathcal{F} of frames *admits filtration* if, for every finite Sub-closed set of formulas Γ and every \mathcal{F} -model M, there exists a finite filtration \widehat{M} of M through Γ based on a frame in \mathcal{F} .

[Lemmon, 1966] If a class \mathcal{F} admits filtration, then $\operatorname{Log}(\mathcal{F})$ has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class ${\cal F}$ admits filtration, then the tense expansion ${\rm Log}_t({\cal F})$ has the fmp.

Recall: L_m is the logic of frames s.t. $R^{m+1} \subseteq R^0 \cup R$.

Theorem [Kudinov & Sh]

The class of L_m -frames admits filtration.

The proof is based on the following two components:

I. Local tabularity of the logic of L_m -clusters [Shehtman & Sh, 2016]. This is used to define \sim . (Recall that a logic *L* is *locally tabular*, if, for every $k < \omega$, *L* contains only a finite number of pairwise nonequivalent formulas in a given *k* variables.)

II. Existence of the L_m -closure, which will be applied to the minimal filtered relation to define \widehat{R}

Any set of formulas Γ on a model M induces an equivalence \sim_{Γ} on M. Any equivalence \sim finer than \sim_{Γ} induces two relations: the *minimal* filtered relation R_{\sim} (depends on \sim only), and the *maximal filtered relation* $R_{\sim,\Gamma}$ (depends on \sim and Γ).

For a finite Γ , and a model M of the logic L, the goal is:

- (1) to find a finite index refinement \sim of \sim_{Γ} ,
- (2) and then to find \widehat{R} between R_{\sim} and $R_{\sim,\Gamma}$ which gives a model \widehat{M} of *L*.

A class \mathcal{F} of frames *admits filtration* if, for every finite Sub-closed set of formulas Γ and every \mathcal{F} -model M, there exists a finite filtration \widehat{M} of M through Γ based on a frame in \mathcal{F} .

[Lemmon, 1966] If a class \mathcal{F} admits filtration, then $\operatorname{Log}(\mathcal{F})$ has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class ${\cal F}$ admits filtration, then the tense expansion ${\rm Log}_t({\cal F})$ has the fmp.

Recall: L_m is the logic of frames s.t. $R^{m+1} \subseteq R^0 \cup R$.

Theorem [Kudinov & Sh]

The class of L_m -frames admits filtration.

The proof is based on the following two components:

I. Local tabularity of the logic of L_m -clusters [Shehtman & Sh, 2016]. This is used to define \sim . (Recall that a logic *L* is *locally tabular*, if, for every $k < \omega$, *L* contains only a finite number of pairwise nonequivalent formulas in a given *k* variables.)

II. Existence of the L_m -closure, which will be applied to the minimal filtered relation to define \widehat{R}

Let (X, R) be a frame. By recursion on n, set:

$$R_{\mathbf{0}}^{[m]} = R, \quad R_{n+\mathbf{1}}^{[m]} = \left(\bigcup_{i \leq n} R_i^{[m]}\right)^{m+\mathbf{1}} \setminus Id_X.$$

Put

$$R^{[m]} = \bigcup_{n \in \omega} R_n^{[m]}.$$

 $(X, R^{[m]})$ is called the L_m-closure of (X, R).

Proposition. $R^{[m]}$ is the smallest relation S on X s.t. S contains R and (X, S) validates L_m .

Any set of formulas Γ on a model M induces an equivalence \sim_{Γ} on M. Any equivalence \sim finer than \sim_{Γ} induces two relations: the *minimal* filtered relation R_{\sim} (depends on \sim only), and the *maximal filtered relation* $R_{\sim,\Gamma}$ (depends on \sim and Γ).

For a finite Γ , and a model M of the logic L, the goal is:

- (1) to find a finite index refinement \sim of \sim_{Γ} ,
- (2) and then to find \widehat{R} between R_{\sim} and $R_{\sim,\Gamma}$ which gives a model \widehat{M} of *L*.

A class \mathcal{F} of frames *admits filtration* if, for every finite Sub-closed set of formulas Γ and every \mathcal{F} -model M, there exists a finite filtration \widehat{M} of M through Γ based on a frame in \mathcal{F} .

[Lemmon, 1966] If a class \mathcal{F} admits filtration, then $\operatorname{Log}(\mathcal{F})$ has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class ${\cal F}$ admits filtration, then the tense expansion ${\rm Log}_t({\cal F})$ has the fmp.

Recall: L_m is the logic of frames s.t. $R^{m+1} \subseteq R^0 \cup R$.

Theorem [Kudinov & Sh]

The class of L_m -frames admits filtration.

The proof is based on the following two components:

I. Local tabularity of the logic of L_m -clusters [Shehtman & Sh, 2016]. This is used to define \sim . (Recall that a logic *L* is *locally tabular*, if, for every $k < \omega$, *L* contains only a finite number of pairwise nonequivalent formulas in a given *k* variables.)

II. Existence of the L_m -closure, which will be applied to the minimal filtered relation to define \widehat{R}

Problem 1. Let \mathcal{F} be a modally definable class of frames, \mathcal{C} the class of clusters occurring in frames in \mathcal{F} . Assume that:

 $\operatorname{Log}(\mathcal{C})$ is locally tabular, and

for any frame (X, R) there exists the smallest relation $R^{\mathcal{F}}$ containing R such that $(X, R^{\mathcal{F}}) \in \mathcal{F}$

Does \mathcal{F} admit filtration?

 $M, a \vDash \Diamond \psi \implies \exists b (aR_0 b \& M, b \vDash \psi).$

Lemma. $\forall \psi \in \Gamma (M, a \vDash \psi \text{ iff } M_0, a \vDash \psi)$

 $M, a \vDash \Diamond \psi \implies \exists b (aR_0 b \& M, b \vDash \psi).$

Lemma. $\forall \psi \in \Gamma(M, a \vDash \psi \text{ iff } M_0, a \vDash \psi)$

Selective filtrations are very effective when combined with *maximality property* in canonical models.

In a transitive canonical frame, every nonempty definable subset has a maximal element [Fine, 85]. In fact:

Maximality lemma. Suppose that F = (X, R) is the canonical frame of a pretransitive L, Ψ is a set of formulas. If $\{a \in X \mid \Psi \subseteq a\}$ is non-empty, then it has a maximal element (with respect to the preorder R^*).

In particular, if $a \in X$, $\varphi \in b$ for some b in R(a), then $R(a) \cap \{b \mid \varphi \in b\}$ has a maximal element.

 $M, a \vDash \Diamond \psi \implies \exists b (aR_0 b \& M, b \vDash \psi).$

Lemma. $\forall \psi \in \Gamma(M, a \vDash \psi \text{ iff } M_0, a \vDash \psi)$

Selective filtrations are very effective when combined with *maximality property* in canonical models.

In a transitive canonical frame, every nonempty definable subset has a maximal element [Fine, 85]. In fact:

Maximality lemma. Suppose that F = (X, R) is the canonical frame of a pretransitive L, Ψ is a set of formulas. If $\{a \in X \mid \Psi \subseteq a\}$ is non-empty, then it has a maximal element (with respect to the preorder R^*).

In particular, if $a \in X$, $\varphi \in b$ for some b in R(a), then $R(a) \cap \{b \mid \varphi \in b\}$ has a maximal element.

Maximality + selective filtrations were used in [Fine, 85] to prove the FMP of subframe transitive logics. These results transfer to extensions of wK4 (m = 1) [G. Bezhanishvili & Ghilardi & Jibladze, 2011] (algebraic methods).

Theorem [Kudinov&Sh]

Let *L* be a subframe canonical extension of L_m . Then it has the finite model property. Moreover, the size of a countermodel is exponential, and its height is bounded by *m* times the length of the formula.

 $M, a \vDash \Diamond \psi \implies \exists b (aR_0 b \& M, b \vDash \psi).$

Lemma. $\forall \psi \in \Gamma(M, a \vDash \psi \text{ iff } M_0, a \vDash \psi)$

Selective filtrations are very effective when combined with *maximality property* in canonical models.

In a transitive canonical frame, every nonempty definable subset has a maximal element [Fine, 85]. In fact:

Maximality lemma. Suppose that F = (X, R) is the canonical frame of a pretransitive L, Ψ is a set of formulas. If $\{a \in X \mid \Psi \subseteq a\}$ is non-empty, then it has a maximal element (with respect to the preorder R^*).

In particular, if $a \in X$, $\varphi \in b$ for some b in R(a), then $R(a) \cap \{b \mid \varphi \in b\}$ has a maximal element.

Maximality + selective filtrations were used in [Fine, 85] to prove the FMP of subframe transitive logics. These results transfer to extensions of wK4 (m = 1) [G. Bezhanishvili & Ghilardi & Jibladze, 2011] (algebraic methods).

Theorem [Kudinov&Sh]

Let *L* be a subframe canonical extension of L_m . Then it has the finite model property. Moreover, the size of a countermodel is exponential, and its height is bounded by *m* times the length of the formula.

It is immediate that all logics L_m are PSpacehard [Ladner, 77]. For the logic wK4 (m = 1), the PSpace upper bound is known [Sh, 2022].

Problem 2. What is the complexity of the logics L_m for m > 1?

We conjecture that they all are $\operatorname{PSpace-}$ complete.

 $M, a \vDash \Diamond \psi \implies \exists b (aR_0 b \& M, b \vDash \psi).$

Lemma. $\forall \psi \in \Gamma(M, a \vDash \psi \text{ iff } M_0, a \vDash \psi)$

Selective filtrations are very effective when combined with *maximality property* in canonical models.

In a transitive canonical frame, every nonempty definable subset has a maximal element [Fine, 85]. In fact:

Maximality lemma. Suppose that F = (X, R) is the canonical frame of a pretransitive L, Ψ is a set of formulas. If $\{a \in X \mid \Psi \subseteq a\}$ is non-empty, then it has a maximal element (with respect to the preorder R^*).

In particular, if $a \in X$, $\varphi \in b$ for some b in R(a), then $R(a) \cap \{b \mid \varphi \in b\}$ has a maximal element.

Maximality + selective filtrations were used in [Fine, 85] to prove the FMP of subframe transitive logics. These results transfer to extensions of wK4 (m = 1) [G. Bezhanishvili & Ghilardi & Jibladze, 2011] (algebraic methods).

Theorem [Kudinov&Sh]

Let *L* be a subframe canonical extension of L_m . Then it has the finite model property. Moreover, the size of a countermodel is exponential, and its height is bounded by *m* times the length of the formula.

Very recently, the finite model property was announced for a family of *m*-transitive subframe logics that are weaker than L_m [Dvorkin, 24].

Problem 3. Do all Kripke complete subframe pretransitive logics have the FMP?

 $M, a \vDash \Diamond \psi \implies \exists b (aR_0 b \& M, b \vDash \psi).$

Lemma. $\forall \psi \in \Gamma(M, a \vDash \psi \text{ iff } M_0, a \vDash \psi)$

Selective filtrations are very effective when combined with *maximality property* in canonical models.

In a transitive canonical frame, every nonempty definable subset has a maximal element [Fine, 85]. In fact:

Maximality lemma. Suppose that F = (X, R) is the canonical frame of a pretransitive L, Ψ is a set of formulas. If $\{a \in X \mid \Psi \subseteq a\}$ is non-empty, then it has a maximal element (with respect to the preorder R^*).

In particular, if $a \in X$, $\varphi \in b$ for some b in R(a), then $R(a) \cap \{b \mid \varphi \in b\}$ has a maximal element.

Maximality + selective filtrations were used in [Fine, 85] to prove the FMP of subframe transitive logics. These results transfer to extensions of wK4 (m = 1) [G. Bezhanishvili & Ghilardi & Jibladze, 2011] (algebraic methods).

Theorem [Kudinov&Sh]

Let *L* be a subframe canonical extension of L_m . Then it has the finite model property. Moreover, the size of a countermodel is exponential, and its height is bounded by *m* times the length of the formula.

Very recently, the finite model property was announced for a family of *m*-transitive subframe logics that are weaker than L_m [Dvorkin, 24].

Problem 3. Do all Kripke complete subframe pretransitive logics have the FMP?

Thank you!