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Basic notions

Language: a countable set of variables Var, Boolean connectives, and unary ♢’s

Normal modal logic

A set of modal A-formulas L is a normal modal logic, if for all diamonds ♢ in the
language, L contains

classical tautologies,

♢⊥ ↔ ⊥, ♢(p ∨ q) ↔ ♢p ∨ ♢q,

and is closed under MP, Sub, and Mon: if (φ→ ψ) ∈ L, then (♢φ→ ♢ψ) ∈ L.

Kripke semantics

A (Kripke) frame F is a set X with binary relation(s) R♢.
A model M on F is a pair (F, θ) where θ : Var → P(X ).

M, x ⊨ p iff x ∈ θ(p), M, x ⊨ ♢φ iff M, y ⊨ φ for some y with xR♢y .

Log(F)= {φ | F ⊨ φ}, where F ⊨ φ means that M, x ⊨ φ for all M on F and all x in M.

A logic L is Kripke complete, if L is the logic of a class C of Kripke frames:
L =

⋂
{Log(F) | F ∈ C}.

A logic L has the finite model property, if L is the logic of a class C of finite frames
(algebras, models).

The tense expansion Lt of a Kripke-complete logic L is the bimodal logic of the class
{(X ,R,R−1) | (X ,R) ⊨ L}.
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We are interested in modal logics with expressible transitive reflexive closure modality.
Such logics are said to be pretransitive. In terms of frames, this means that for some
fixed finite m, in frames of the logic we have

Rm+1 ⊆
⋃

i≤m R i ,

where R0 is the diagonal, R i+1 = R ◦ R i , and ◦ is the composition. We address this
property as m-transitivity.

General problem

The finite model property of pretransitive logics and their tense expansions.

Numerous results are known for the case m = 1, only a few for m > 1...
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m-transitivity: Rm+1 ⊆
⋃

i≤m R i

m = 1: R2 ⊆ R0 ∪ R

[McKinsey, 1941] FMP of the logic S4 of all preorders R2 ∪ R0 ⊆ R.
[Lemmon, 1966] FMP of the logic K4 of all transitive relations R2 ⊆ R.
[Segerberg, 1970] FMP of the tense expansions (another diamond for the inverse
relation) of K4, S4.
[Fine, 1985] FMP for the case when a class of transitive frames is closed under taking
substructures (transitive subframe logics).
[...]

[G. Bezhanishvili & Esakia & Gabelaia, 2011] FMP of the logic wK4 of all 1-transitive
relations...
[G. Bezhanishvili & Ghilardi & Jibladze, 2011] ... and its subframe extensions.
[Ma & Chen, 2023] FMP for the tense expansion of wK4.

m > 1

For m > 1, the FMP of the logic of all m-transitive relations is a Big Open Problem.

FMP is known for the following subclasses of m-transitive frames:
[Gabbay, 1972] Rm+1 ⊆ R (m-transitive analogs of K4);
[Kudinov & Sh, 2015] FMP of the logics of m-transitive relations with bounded height
of their skeletons;
[Kudinov & Sh, 2023] FMP of the logics Lm of relations with Rm+1 ⊆ R0 ∪ R
(m-transitive analogs of wK4) and for tense expansions of Lm; FMP of subframe
extensions of Lm...
[Dvorkin, 2024] ... and actually for subframe m-transitive logics weaker than Lm.

Remark. Except for logics in [Kudinov & Sh, 2015], the logics are subframe.
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FMP: two types of filtrations

Strategy

Given a model M ⊨ L and a formula φ satisfiable in M, we want to construct a finite
model M̂ such that

M̂ ⊨ L, and
φ is satisfiable in M̂.

Two standard approaches

Filtrations in the style of Lemmon-Scott-Segerberg, or epi-filtrations:
M̂ is a quotient (of special kind) of M.

Selective filtrations:
M̂ is a submodel (of special kind) of M.

Transfer results

In many cases, the proof of the FMP of L results in the FMP for other systems.

In the case of selective filtrations, one might expect FMP for subframe extensions of L
[Fine, 1985].

In the case of epi-filtrations, FMP transfers to the tense (and some other) expansion
of L [Kikot & Zolin & Sh, 2014].
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The idea of epifiltrations

Any set of formulas Γ on a model M induces an
equivalence ∼Γ on M. Any equivalence ∼ finer
than ∼Γ induces two relations: the minimal
filtered relation R∼ (depends on ∼ only), and
the maximal filtered relation R∼,Γ (depends on
∼ and Γ).
For a finite Γ, and a model M of the logic L, the
goal is:

(1) to find a finite index refinement ∼ of ∼Γ,

(2) and then to find R̂ between R∼ and R∼,Γ

which gives a model M̂ of L.

A class F of frames admits filtration if, for
every finite Sub-closed set of formulas Γ and
every F-model M, there exists a finite filtration
M̂ of M through Γ based on a frame in F .

[Lemmon, 1966] If a class F admits filtration,
then Log(F) has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class F admits
filtration, then the tense expansion Logt(F) has
the fmp.

Formal definition of epifiltration (bonus track)

Put a ∼Γ b iff ∀ψ ∈ Γ (M, a |= ψ ⇔ M, b |= ψ)
Let Γ be a subformula-closed set of formulas,
M = (X ,R, θ) a model. An (epi)filtration of M
through Γ is a model M̂ = (X̂ , R̂, θ̂) such that:

(a) X̂ = X/∼ for some ∼ that refines ∼Γ;

(b) M̂, [a] |= p iff M, a |= p for variables p ∈ Γ;

(c) R∼ ⊆ R̂ ⊆ R∼,Γ, where

[a]R∼ [b] iff ∃a′ ∼ a ∃b′ ∼ b (a′ R b′),

[a]R∼,Γ [b] iff ♢φ ∈ Γ&M, b |= φ ⇒ M, a |= ♢φ
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then Log(F) has the fmp.

Moreover, we have:

[Kikot & Zolin & Sh, 2014] If a class F admits
filtration, then the tense expansion Logt(F) has
the fmp.

The most standard application of the method:

∼ is ∼Γ.

For example, for the case of transitive frames, the
transitive closure of the minimal filtered relation
R∼Γ

gives a filtration.

In general, letting the equivalence ∼ be finer than
∼Γ gives much more flexibility.
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The class of Lm-frames admits filtration.

The proof is based on the following two compo-
nents:

I. Local tabularity of the logic of Lm-clusters
[Shehtman & Sh, 2016]. This is used to define
∼. (Recall that a logic L is locally tabular, if,
for every k < ω, L contains only a finite number
of pairwise nonequivalent formulas in a given k
variables.)

II. Existence of the Lm-closure, which will be ap-
plied to the minimal filtered relation to define R̂
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for every k < ω, L contains only a finite number
of pairwise nonequivalent formulas in a given k
variables.)

II. Existence of the Lm-closure, which will be ap-
plied to the minimal filtered relation to define R̂

Let (X ,R) be a frame. By recursion on n, set:

R
[m]
0 = R, R

[m]
n+1 =

(⋃
i≤n R

[m]
i

)m+1
\IdX .

Put
R [m] =

⋃
n∈ω R [m]

n .

(X ,R [m]) is called the Lm-closure of (X ,R).

Proposition. R [m] is the smallest relation S on X
s.t. S contains R and (X , S) validates Lm.
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∼. (Recall that a logic L is locally tabular, if,
for every k < ω, L contains only a finite number
of pairwise nonequivalent formulas in a given k
variables.)

II. Existence of the Lm-closure, which will be ap-
plied to the minimal filtered relation to define R̂

Problem 1. Let F be a modally definable class
of frames, C the class of clusters occurring in
frames in F . Assume that:

Log(C) is locally tabular, and

for any frame (X ,R) there exists the
smallest relation RF containing R such
that (X ,RF ) ∈ F

Does F admit filtration?
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Let M = (X ,R, θ) and M0 = (X0,R0, θ0) be
models, X0 ⊆ X , R0 ⊆ R, and
θ0(p) = θ(p)∩ X0 for variables. Let Γ be a set
of modal formulas closed under taking
subfromulas. M0 is called a selective filtration
of M through Γ, if for all ♢ψ ∈ Γ, a ∈ X0,

M, a ⊨ ♢ψ ⇒ ∃b (aR0b&M, b ⊨ ψ).

Lemma. ∀ψ ∈ Γ (M, a ⊨ ψ iff M0, a ⊨ ψ)

Selective filtrations are very effective when
combined with maximality property in canon-
ical models.

In a transitive canonical frame, every non-
empty definable subset has a maximal element
[Fine, 85]. In fact:

Maximality lemma. Suppose that F = (X ,R)
is the canonical frame of a pretransitive L, Ψ
is a set of formulas. If {a ∈ X | Ψ ⊆ a} is
non-empty, then it has a maximal element
(with respect to the preorder R∗).

In particular, if a ∈ X , φ ∈ b for some b in
R(a), then R(a) ∩ {b | φ ∈ b} has a maximal
element.

Maximality + selective filtrations were used in
[Fine, 85] to prove the FMP of subframe transi-
tive logics. These results transfer to extensions
of wK4 (m = 1) [G. Bezhanishvili & Ghilardi
& Jibladze, 2011] (algebraic methods).

Theorem [Kudinov&Sh]

Let L be a subframe canonical extension of
Lm. Then it has the finite model property.
Moreover, the size of a countermodel is
exponential, and its height is bounded by m
times the length of the formula.
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Let L be a subframe canonical extension of
Lm. Then it has the finite model property.
Moreover, the size of a countermodel is
exponential, and its height is bounded by m
times the length of the formula.

It is immediate that all logics Lm are PSpace-
hard [Ladner, 77]. For the logic wK4 (m = 1),
the PSpace upper bound is known [Sh, 2022].

Problem 2. What is the complexity of the
logics Lm for m > 1?

We conjecture that they all are PSpace-
complete.
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element.

Maximality + selective filtrations were used in
[Fine, 85] to prove the FMP of subframe transi-
tive logics. These results transfer to extensions
of wK4 (m = 1) [G. Bezhanishvili & Ghilardi
& Jibladze, 2011] (algebraic methods).

Theorem [Kudinov&Sh]

Let L be a subframe canonical extension of
Lm. Then it has the finite model property.
Moreover, the size of a countermodel is
exponential, and its height is bounded by m
times the length of the formula.

Very recently, the finite model property was an-
nounced for a family of m-transitive subframe
logics that are weaker than Lm [Dvorkin, 24].

Problem 3. Do all Kripke complete subframe
pretransitive logics have the FMP?

Thank you!
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