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In this talk I will announce recent developments, obtained by our group in
the project “Research Training Group in Logic and Its Application”, 2023
– 2024.
➥ New theoretical results [Gabriel Agnew, Uzias Gutierrez-Hougardy,

John Harding, Jackson West, Sh].

➥ Related software tools [Hannah Himelright and Andrew Meléndrez
Zerwekh ].
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Close and far

Let X be a metric space. For instance, X can be the real line R, or the usual Euclidean plane R2, or any
other set equipped with a distance function.

Two points are said to be close, if they are at a distance less than 1.

For a set Y ⊆ X , let ⟨c⟩Y be the set of points z such that each z is close to some point in Y :

⟨c⟩Y = {z | d(z, y) < 1 for some y ∈ Y}

Y is the red closed ball,
⟨c⟩Y is the blue open ball:

Modal terms are build using the operations of union, intersection, complement, and the operation ⟨c⟩.
The modal logic of closeness Logc(X ) is the set of all valid in X statements T ⊆ S, where T , S are
modal terms.
Easy examples: Y ⊆ ⟨c⟩Y is true in all Rn; ⟨c⟩⟨c⟩Y ⊆ ⟨c⟩Y is not valid in unbounded spaces.

It is less trivial to check that

we have in R, but not in R2: ⟨c⟩Y1 ∩ ⟨c⟩Y2 ∩ ⟨c⟩Y3 ⊆
⋃

1≤i ̸=j≤3
⟨c⟩(Yi ∩ ⟨c⟩Yj )

we have in R2, but not in R3: ⟨c⟩Y1 ∩ . . . ∩ ⟨c⟩Y6 ⊆
⋃

1≤i ̸=j≤6
⟨c⟩(Yi ∩ ⟨c⟩Yj )

In fact, we have:

Theorem (Agnew, Gutierrez-Hougardy, Harding, West, Sh)
Logc(R) ⊋ Logc(R

2) ⊋ Logc(R
3) ⊋ Logc(R

4) ⊋ . . .

More details will be given in Gabriel’s talk in a few minutes.
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Close and far

Two points are said to be far, if they are at a distance greater than 1.

Now for a set Y ⊆ X , let ⟨f⟩Y be the set of points z such that each z is far from some point in Y :

⟨f⟩Y = {z | d(z, y) > 1 for some y ∈ Y}

Y is the small red closed ball,
⟨f⟩Y is the blue area:

The corresponding statements form Logf (X ), the modal logic of farness.
Easy examples: Y ⊆ ⟨f⟩Y is not valid in Rn, while Y ⊆ ⟨f⟩⟨f⟩Y is valid.

Theorem (Agnew, Gutierrez-Hougardy, Harding, West, Sh)
For every dimension n, there exists k(n) such that for all m > k(n), Logf (R

n) ̸= Logf (R
m).

More details will be given by Uzias in his talk.
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Axiomatization and decidability

In a general setting, modal logic is defined for every relational structure X (frame): for a binary relation
R on X , put ♢RY = {z | zRy for some y ∈ Y}. The set Log X of valid in X modal statements is called
the modal logic of X .

Axiomatization problem: Describe a set Ψ of formulas such that Log X is the set of logical
consequences of Ψ. In this case, Ψ is called a complete axiomatization of Log X .

Finite axiomatizability: Does the logic have a finite complete axiomatization?

Decidability: Decidability of Log X means that there exists an algorithm correctly deciding which
statements are valid in X , and which are not.

Modal logics of relations induced by distance in a metric space:

O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Axiomatizing distance logics, 2002.

O. Kutz, F. Wolter, H. Sturm, N.-Y. Suzuki, and M. Zakharyaschev. Logics of metric spaces, 2003.

F. Wolter and M. Zakharyaschev. A logic for metric and topology, 2005.

A. Kurucz, F. Wolter, and M. Zakharyaschev. Modal logics for metric spaces: Open problems, 2005.

O. Kutz. Notes on logics of metric spaces, 2007.

A. Kudinov, I. Shapirovsky, and V. Shehtman. On modal logics of Hamming spaces, 2012

....

[Agnew, Gutierrez-Hougardy, Harding, West, Sh]:

1. A complete axiomatization was found for the logic of farness on the class Unb of unbounded
metric spaces.

2. This logic and all Logf Rn are not finitely axiomatizable.

3. A finite complete axiomatization was found for the logic of farness on the class Ult of ultrametric
spaces.

4. The logic of farness on Unb and the logic of farness on Ult are decidable.

More details will be given by Jackson in his talk.
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Non-finitely axiomatizable logics and the m-equivalence decision problem

The finite axiomatizability problem is closely related to the following property:

Two structures F and G are said to be m-equivalent, if they are indistinguishable by modal formulas
containing at most m propositional variables. In symbols: F ∼m G .

Lemma. Let L be a logic. Assume that for every m there are structures Fm, Gm such that L is included
in Log Fm, L is not included in Log Gm, and

Fm ∼m Gm.

Then L has no finite axiomatization.

It can be quite non-trivial to “manually” recognize m-equivalence, even for a pair of very small structures.
However, on finite frames, this problem reduces to analyzing a finite family of quotient-frames, and so is
decidable.

[Himelright and Zerwekh]: A Python implementation of an algorithm solving the m-equivalence problem
on finite frames.

Hannah and Andrew will give more details in their talk.

Thank you!
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